Perpetual motion


Perpetual motion
Robert Fludd's 1618 "water screw" perpetual motion machine from a 1660 wood engraving. This device is widely credited as the first recorded attempt to describe such a device in order to produce useful work, that of driving millstones.[1] Although the machine would not work, the idea was that water from the top tank turns a water wheel (bottom-left), which drives a complicated series of gears and shafts that ultimately rotate the Archimedes' screw (bottom-center to top-right) to pump water to refill the tank. The rotary motion of the water wheel also drives two grinding wheels (bottom-right) and is shown as providing sufficient excess water to lubricate them.

Perpetual motion describes hypothetical machines that operate or produce useful work indefinitely and, more generally, hypothetical machines that produce more work or energy than they consume, whether they might operate indefinitely or not.

There is undisputed scientific consensus that perpetual motion in a closed system would violate the first law of thermodynamics and/or the second law of thermodynamics. Machines which extract energy from seemingly perpetual sources - such as ocean currents - are indeed capable of moving "perpetually" (for as long as that energy source itself endures), but they are not considered to be perpetual motion machines because they are consuming energy from an external source and are not closed systems. Similarly, machines which comply with both laws of thermodynamics but access energy from obscure sources are sometimes referred to as perpetual motion machines, although they also do not meet the standard criteria for the name.

Despite the fact that successful closed system perpetual motion devices are physically impossible in terms of our current understanding of the laws of physics, the pursuit of perpetual motion remains popular.

Contents

Basic principles

There is an undisputed scientific consensus that perpetual motion in a closed system violates either the first law of thermodynamics, the second law of thermodynamics, or both. The first law of thermodynamics is essentially a statement of conservation of energy. The second law can be phrased in several different ways, the most intuitive of which is that heat flows spontaneously from hotter to colder places; the most well known statement is that entropy tends to increase, or at the least stay the same; another statement is that no heat engine (an engine which produces work while moving heat between two separate places) can be more efficient than a Carnot heat engine.

In other words:

  1. In any closed system, you cannot create new energy (first law of thermodynamics)
  2. You always lose a little energy (second law of thermodynamics)
  3. Therefore a machine cannot make more energy than it uses or even enough to keep itself operating.

Machines which comply with both laws of thermodynamics by accessing energy from unconventional sources are sometimes referred to as perpetual motion machines, although they do not meet the standard criteria for the name. By way of example, clocks and other low-power machines, such as Cox's timepiece, have been designed to run on the differences in barometric pressure or temperature between night and day. These machines have a source of energy, albeit one which is not readily apparent so that they only seem to violate the laws of thermodynamics.

Machines which extract energy from seemingly perpetual sources - such as ocean currents - are indeed capable of moving "perpetually" until that energy source runs down. But they are not considered to be perpetual motion machines because they are consuming energy from an external source and are not closed systems.

Classification

One classification of perpetual motion machines refers to the particular law of thermodynamics the machines purport to violate:[2]

  • A perpetual motion machine of the first kind produces work without the input of energy. It thus violates the first law of thermodynamics: the law of conservation of energy.
  • A perpetual motion machine of the second kind is a machine which spontaneously converts thermal energy into mechanical work. When the thermal energy is equivalent to the work done, this does not violate the law of conservation of energy. However it does violate the more subtle second law of thermodynamics (see also entropy). The signature of a perpetual motion machine of the second kind is that there is only one heat reservoir involved, which is being spontaneously cooled without involving a transfer of heat to a cooler reservoir. This conversion of heat into useful work, without any side effect, is impossible, according to the second law of thermodynamics.

A more obscure category is a perpetual motion machine of the third kind, usually (but not always)[3] defined as one that completely eliminates friction and other dissipative forces, to maintain motion forever (due to its mass inertia). Third in this case refers solely to the position in the above classification scheme, not the third law of thermodynamics. Although it is impossible to make such a machine,[4][5] as dissipation can never be 100% eliminated in a mechanical system, it is nevertheless possible to get very close to this ideal (see examples in the Low Friction section). Such a machine would not serve as a source of energy but would have utility as a perpetual energy storage device.

Use of the term "impossible" and perpetual motion

October 1920 issue of Popular Science magazine, on perpetual motion. Although scientists have established them to be impossible under the known laws of physics, perpetual motion continues to capture the imagination of inventors. The device shown is a "mass leverage" device, where the spherical weights on our right have more leverage than those on the left, supposedly creating a perpetual rotation, but there are a greater number of weights to our left, balancing the device.

While the laws of physics are incomplete and stating that physical things are absolutely impossible is un-scientific, "impossible" is used in common parlance to describe those things which absolutely cannot occur within the context of our current formulation of physical laws.[6]

The conservation laws are particularly robust from a mathematical perspective. Noether's theorem, which was proven mathematically in 1915, states that any conservation law can be derived from a corresponding continuous symmetry of the action of a physical system.[7] This means that if the laws of physics (not simply the current understanding of them, but the actual laws, which may still be undiscovered) and the various physical constants remain invariant over time — if the laws of the universe are fixed — then the conservation laws must hold. On the other hand, if the conservation laws are invalid, then much of modern physics would be incorrect as well.[8]

Scientific investigations as to whether the laws of physics are invariant over time use telescopes to examine the universe in the distant past to discover, to the limits of our measurements, whether ancient stars were identical to stars today. Combining different measurements such as spectroscopy, direct measurement of the speed of light in the past and similar measurements demonstrates that physics has remained substantially the same, if not identical, for all of observable history spanning billions of years.[9]

The principles of thermodynamics are so well established, both theoretically and experimentally, that proposals for perpetual motion machines are universally met with disbelief on the part of physicists. Any proposed perpetual motion design offers a potentially instructive challenge to physicists: one is almost completely certain that it can't work, so one must explain how it fails to work. The difficulty (and the value) of such an exercise depends on the subtlety of the proposal; the best ones tend to arise from physicists' own thought experiments and often shed light upon certain aspects of physics.

The law that entropy always increases, holds, I think, the supreme position among the laws of Nature. If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equations — then so much the worse for Maxwell's equations. If it is found to be contradicted by observation — well, these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation. — Sir Arthur Stanley Eddington, The Nature of the Physical World (1927)

Techniques

One day man will connect his apparatus to the very wheelwork of the universe [...] and the very forces that motivate the planets in their orbits and cause them to rotate will rotate his own machinery.

Nikola Tesla

Some common ideas recur repeatedly in perpetual motion machine designs. Many ideas that continue to appear today were stated as early as 1670 by John Wilkins, Bishop of Chester and an official of the Royal Society. He outlined three potential sources of power for a perpetual motion machine, "Chymical Extractions", "Magnetical Virtues" and "the Natural Affection of Gravity".[1]

The seemingly mysterious ability of magnets to influence motion at a distance without any apparent energy source has long appealed to inventors. One of the earliest examples of a system using magnets was proposed by Wilkins and has been widely copied since: it consists of a ramp with a magnet at the top, which pulled a metal ball up the ramp. Near the magnet was a small hole that was supposed to allow the ball to drop under the ramp and return to the bottom, where a flap allowed it to return to the top again. The device simply could not work: any magnet strong enough to pull the ball up the ramp would necessarily be too powerful to allow it to drop through the hole. Faced with this problem, more modern versions typically use a series of ramps and magnets, positioned so the ball is to be handed off from one magnet to another as it moves. The problem remains the same.

Perpetuum Mobile of Villard de Honnecourt (about 1230).

Gravity also acts at a distance, without an apparent energy source. But to get energy out of a gravitational field (for instance, by dropping a heavy object, producing kinetic energy as it falls) you have to put energy in (for instance, by lifting the object up), and some energy is always dissipated in the process. A typical application of gravity in a perpetual motion machine is Bhaskara's wheel in the 12th century, whose key idea is itself a recurring theme, often called the overbalanced wheel: Moving weights are attached to a wheel in such a way that they fall to a position further from the wheel's center for one half of the wheel's rotation, and closer to the center for the other half. Since weights further from the center apply a greater torque, the result is (or would be, if such a device worked) that the wheel rotates forever. The moving weights may be hammers on pivoted arms, or rolling balls, or mercury in tubes; the principle is the same.

Yet another theoretical machine involves a frictionless environment for motion. This involves the use of diamagnetic or electromagnet levitation to float an object. This is done in a vacuum to eliminate air friction and friction from an axle. The levitated object is then free to rotate around its center of gravity without interference. However, this machine has no practical purpose because the rotated object cannot do any work as work requires the levitated object to cause motion in other objects, bringing friction into the problem. Furthermore, a perfect vacuum is an unattainable goal since both the container and the object itself would slowly vaporize, thereby degrading the vacuum.

To extract work from heat, thus producing a perpetual motion machine of the second kind, the most common approach (dating back at least to Maxwell's demon) is unidirectionality. Only molecules moving fast enough and in the right direction are allowed through the demon's trap door. In a Brownian ratchet, forces tending to turn the ratchet one way are able to do so while forces in the other direction aren't. A diode in a heat bath allows through currents in one direction and not the other. These schemes typically fail in two ways: either maintaining the unidirectionality costs energy (Maxwell's demon needs light to look at all those particles and see what they're doing)[dubious ], or the unidirectionality is an illusion and occasional big violations make up for the frequent small non-violations (the Brownian ratchet will be subject to internal Brownian forces and therefore will sometimes turn the wrong way).

Buoyancy is another frequently-misunderstood phenomenon. Some proposed perpetual-motion machines miss the fact that to push a volume of air down in a fluid takes the same work as to raise a corresponding volume of fluid up against gravity. These types of machines may involve two chambers with pistons, and a mechanism to squeeze the air out of the top chamber into the bottom one, which then becomes buoyant and floats to the top. The squeezing mechanism in these designs would not be able to do enough work to move the air down, or would leave no excess work available to be extracted.

Invention history

Orffyreus Wheel. The device was designed by Johann Bessler.

The 8th century Bavarian "magic wheel" was a disc mounted on an axle powered by lodestones, claimed to be able to rotate forever.[10]

Indian mathematician-astronomer, Bhāskara II, described a wheel, dating to 1150, that would run forever.[11]

Villard de Honnecourt in 1235 described, in a 33 page manuscript, a perpetual motion machine of the first kind. His idea was based on the changing torque of a series of weights attached with hinges to the rim of a wheel. While ascending they would hang close to the wheel and have little torque, but they would topple after reaching the top and drag the wheel down on descent due to their greater torque during the swing. His device spawned a variety of imitators who continued to refine the basic design.

Following the example of Villard, Peter of Maricourt designed a magnetic globe which when mounted without friction parallel to the celestial axis would rotate once a day and serve as an automatic armillary sphere.[11]

In 1607 Cornelius Drebbel in "Wonder-vondt van de eeuwighe bewegingh" dedicated a Perpetuum motion machine to James I of England. It was described by Heinrich Hiesserle von Chodaw in 1621. Also in the 17th century, Robert Boyle's proposed self-flowing flask purports to fill itself through siphon action and Blaise Pascal introduced a primitive form of roulette and the roulette wheel in his search for a perpetual motion machine.[12]

In the 18th century, Johann Bessler (also known as Orffyreus) created a series of claimed perpetual motion machines. In 1775 the Royal Academy of Sciences in Paris issued the statement that the Academy "will no longer accept or deal with proposals concerning perpetual motion".

In the 19th century, the invention of perpetual motion machines became an obsession for many scientists. Many machines were designed based on electricity. John Gamgee developed the Zeromotor, a perpetual motion machine of the second kind. Devising these machines is a favourite pastime of many eccentrics, who often devised elaborate machines in the style of Rube Goldberg or Heath Robinson. Such designs appeared to work on paper, though various flaws or obfuscated external energy sources are eventually understood to have been incorporated into the machine (unintentionally or intentionally).

Patents

Proposals for such inoperable machines have become so common that the United States Patent and Trademark Office (USPTO) has made an official policy of refusing to grant patents for perpetual motion machines without a working model. The USPTO Manual of Patent Examining Practice states:

With the exception of cases involving perpetual motion, a model is not ordinarily required by the Office to demonstrate the operability of a device. If operability of a device is questioned, the applicant must establish it to the satisfaction of the examiner, but he or she may choose his or her own way of so doing.[13]

And, further, that:

A rejection [of a patent application] on the ground of lack of utility includes the more specific grounds of inoperativeness, involving perpetual motion. A rejection under 35 U.S.C. 101 for lack of utility should not be based on grounds that the invention is frivolous, fraudulent or against public policy.[14]

The filing of a patent application is a clerical task, and the USPTO won't refuse filings for perpetual motion machines; the application will be filed and then most probably rejected by the patent examiner, after he has done a formal examination.[15] Even if a patent is granted, it doesn't mean that the invention actually works; it just means that the examiner thinks that it works, or that he couldn't figure out why it wouldn't work.[15]

The USPTO maintains a collection of Perpetual Motion Gimmicks as Digest 9 in Class 74

The USPTO has granted a few patents for motors that are claimed to run without net energy input. Some of these are:

Howard R. Johnson, U.S. Patent 4,151,431
USPatent4151431-1.pngUSPatent4151431-2.png
  • Johnson, Howard R., U.S. Patent 4,151,431 "Permanent magnet motor", April 24, 1979[15]
  • Baker, Daniel, U.S. Patent 4,074,153 "Magnetic propulsion device", February 14, 1978
  • Hartman; Emil T., U.S. Patent 4,215,330 "Permanent magnet propulsion system", December 20, 1977 (this device is related to the Simple Magnetic Overunity Toy (SMOT)),
  • Flynn; Charles J., U.S. Patent 6,246,561 "Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same", July 31, 1998
  • Patrick, et al., U.S. Patent 6,362,718 "Motionless electromagnetic generator" , March 26, 2002
  • Green, Willie A., U.S. Patent 6,526,925 "Piston Driven Rotary Engine", March 4, 2003 "Fluid driven device utilizing a leveraged system with minimal displacement"
  • Goldenblum, Halm, U.S. Patent 6,962,052 "Energy generation mechanism, device and system", November 8, 2005 "A chamber with a partition which lets gas molecules flow one way and not the other. The pressure which builds up on one side of the partition is used to drive a generator."
  • Flynn, Joe, U.S. Patent 6,246,561 "Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same", June 12, 2001
  • Gates; Glenn A., U.S. Patent 6,523,646 "Spring driven apparatus", February 23, 2003 "Energy is stored in the springs and power is generated by way of the various forces which cause the springs to wind and unwind."
  • McQueen; Jesse, U.S. Patent 7,095,126 "Internal energy generating power source", August 22, 2006 "An external power source such as a battery is used to initially supply power to start an alternator and generator. Once the system has started it is not necessary for the battery to supply power to the system. The battery can then be disconnected. The alternator and electric motor work in combination to generate electrical power." Examiners: Schuberg, Darren ; Mohandesi, Iraj A.
  • Haisch, et al. U.S. Patent 7,379,286 "Quantum vacuum energy extraction", May 27, 2008 "[...] converting energy from the electromagnetic quantum vacuum available at any point in the universe to usable energy in the form of heat, electricity, mechanical energy or other forms of power. [...] When atoms enter into suitable micro Casimir cavities a decrease in the orbital energies of electrons in atoms will thus occur. Such energy will be captured in the claimed devices. Upon emergence form such micro Casimir cavities the atoms will be re-energized by the ambient electromagnetic quantum vacuum. [...] process is also consistent with the conservation of energy in that all usable energy does come at the expense of the energy content of the electromagnetic quantum vacuum."

In 1979, Joseph Newman filed a US Patent application for his "energy machine" which unambiguously claimed over-unity operation, where power output exceeded power input; the source of energy was claimed to be the atoms of the machine's copper conductor.[16] The Patent Office rejected the application after the National Bureau of Standards measured the electrical input to be greater than the electrical output. Newman challenged the decision in court and lost.[17]

Other patent offices around the world, such as the United Kingdom Patent Office, have similar practices. Section 4.05 of the UKPO Manual of Patent Practice states:

Processes or articles alleged to operate in a manner which is clearly contrary to well-established physical laws, such as perpetual motion machines, are regarded as not having industrial application.[18]

Examples of decisions by the UK Patent Office to refuse patent applications for perpetual motion machines include:[19]

Decision BL O/044/06, John Frederick Willmott's application no. 0502841[20]
Decision BL O/150/06, Ezra Shimshi's application no. 0417271[21]

The European Patent Classification (ECLA) has classes including patent applications on perpetual motion systems: ECLA classes "F03B17/04: Alleged perpetua mobilia ..." and "F03B17/00B: [... machines or engines] (with closed loop circulation or similar : ... Installations wherein the liquid circulates in a closed loop; Alleged perpetua mobilia of this or similar kind ...".[22]

Recent examples

In the late 19th century the term "perpetual motion" increasingly became associated with fraud and since then inventors have referred to perpetual motion devices using various alternatives such as "over-unity", "free energy", "zero point energy".[citation needed] Here are some representative examples of contemporary proposed perpetual motion designs:

Apparent perpetual motion machines

Even though they fully respect the laws of thermodynamics, there are a few conceptual or real devices that appear to be in "perpetual motion." Closer analysis reveals that they actually "consume" some sort of natural resource or latent energy, such as the phase changes of water or other fluids or small natural temperature gradients. In general, extracting large amounts of work using these devices is difficult to impossible.

Resource consuming

Some examples of such devices include:

  • The drinking bird toy functions using small ambient temperature gradients and evaporation.
  • A capillarity based water pump functions using small ambient temperature gradients and vapour pressure differences.
  • A Crookes radiometer consists of a partial vacuum glass container with a lightweight propeller moved by (light-induced) temperature gradients.
  • Any device picking up minimal amounts of energy from the natural electromagnetic radiation around it, such as a solar powered motor.
  • The Atmos clock uses changes in the vapor pressure of ethyl chloride with temperature to wind the clock spring.
  • A device powered by radioactive decay from an isotope with a relatively long half-life; such a device could plausibly operate for hundreds or thousands of years.

Low friction

  • In flywheel energy storage, "modern flywheels can have a zero-load rundown time measurable in years."[23]
  • Once spun up, objects in the vacuum of space—stars, black holes, planets, moons, spin-stabilized satellites, etc.—continue spinning almost indefinitely with no further energy input. Tide on Earth is dissipating the gravitational energy of the Moon/Earth system at an average rate of about 3.75 terawatts.[24][25]
  • In certain quantum-mechanical systems (such as superfluidity and superconductivity), dissipation-free "motion" is possible.

Thought experiments

In some cases a thought (or "gedanken") experiment appears to suggest that perpetual motion may be possible through accepted and understood physical processes. However, in all cases, a flaw has been found when all of the relevant physics is considered. Examples include:

  • Maxwell's Demon: This was originally proposed to show that the Second Law of Thermodynamics applied in the statistical sense only, by postulating a "demon" that could select energetic molecules and extract their energy. Subsequent analysis (and experiment) have shown there is no way to physically implement such a system that does not result in an overall increase in entropy.
  • Brownian Ratchet: In this thought experiment, one imagines a paddle wheel connected to a ratchet. Brownian motion would cause surrounding gas molecules to strike the paddles, but the ratchet would only allow it to turn in one direction. A more thorough analysis showed that when a physical ratchet was considered at this molecular scale, Brownian motion would also affect the ratchet and cause it to randomly fail resulting in no net gain. Thus, the device would not violate the Laws of thermodynamics.

Free energy suppression

Because perpetual motion claims have been around for some time, conspiracy theories are often invoked to explain the lack of acceptance and/or availability of such technology.

Gallery

This is a gallery of some of the perpetual motion machine plans.

See also

Notes

  1. ^ a b Angrist, Stanley (January 1968). "Perpetual Motion Machines". Scientific American 218 (1): 115–122. 
  2. ^ Rao, Y. V. C. (2004). An Introduction to Thermodynamics. Hyderabad, India: Universities Press (India) Private Ltd.. ISBN 8173714614. http://books.google.com/books?id=iYWiCXziWsEC. Retrieved August 2010. 
  3. ^ An alternative definition is given, for example, by Schadewald, who defines a "perpetual motion machine of the third kind" as a machine that violates the third law of thermodynamics. See Schadewald, Robert J. (2008), Worlds of Their Own - A Brief History of Misguided Ideas: Creationism, Flat-Earthism, Energy Scams, and the Velikovsky Affair, Xlibris, ISBN 978-1-4636-0435-1. pp55–56
  4. ^ Wong, Kau-Fui Vincent (2000). Thermodynamics for Engineers. CRC Press. p. 154. ISBN 978-0-84-930232-9. http://books.google.com/?id=rEOMi-85v64C 
  5. ^ Akshoy, Ranjan Paul; Sanchayan, Mukherjee; Pijush, Roy (2005). Mechanical Sciences: Engineering Thermodynamics and Fluid Mechanics. Prentice-Hall India. p. 51. ISBN 978-8-12-032727-6. http://books.google.com/?id=m07QzMlX47wC 
  6. ^ Barrow, John D. (1998). Impossibility: The Limits of Science and the Science of Limits. Oxford University Press. ISBN 978-0198518907. 
  7. ^ Goldstein, Herbert; Poole, Charles; Safko, John (2002). Classical Mechanics (3rd edition). San Francisco: Addison Wesley. pp. 589–598. ISBN 0-201-65702-3 
  8. ^ "The perpetual myth of free energy". BBC News. 9 July 2007. http://news.bbc.co.uk/1/hi/technology/6283374.stm. Retrieved 16 August 2010. "In short, law states that energy cannot be created or destroyed. Denying its validity would undermine not just little bits of science - the whole edifice would be no more. All of the technology on which we built the modern world would lie in ruins." 
  9. ^ "CE410: Are constants constant?", talkorigins
  10. ^ Mark E. Eberhart:Feeding the fire: the lost history and uncertain future of mankind's energy,p.14
  11. ^ a b Lynn Townsend, White Jr (1960). "Tibet, India, and Malaya as Sources of Western Medieval Technology". The American Historical Review 65 (3): 522–526. 
  12. ^ MIT, "Inventor of the Week Archive: Pascal : Mechanical Calculator", May 2003. "Pascal worked on many versions of the devices, leading to his attempt to create a perpetual motion machine. He has been credited with introducing the roulette machine, which was a by-product of these experiments."
  13. ^ "600 Parts, Form, and Content of Application - 608.03 Models, Exhibits, Specimens". Manual of Patent Examining Procedure (8 ed.). August 2001. http://www.uspto.gov/web/offices/pac/mpep/documents/0600_608_03.htm 
  14. ^ "700 Examination of Applications II. UTILITY - 706.03(a) Rejections Under 35 U.S.C. 101". Manual of Patent Examining Procedure (8 ed.). August 2001. http://www.uspto.gov/web/offices/pac/mpep/documents/0700_706_03_a.htm 
  15. ^ a b c Pressman, David (2008). Nolo. ed. Patent It Yourself (13, illustrated, revised ed.). Nolo. p. 99. ISBN 1413308546. http://books.google.com/?id=5KGN1yPzPa8C&pg=PA99&dq=U.S.+Patent+4,151,431. 
  16. ^ Peterson, Ivars (1 June 1985). "A patent pursuit: Joe Newman’s ‘energy machine’ - inventor fights for patent on machine that generates more energy than it takes in from external sources". Science News. http://findarticles.com/p/articles/mi_m1200/is_v127/ai_3794102. 
  17. ^ Peterson, Ivars (5 July 1986). "NBS Report Short Circuits Energy Machine". Science News. http://findarticles.com/p/articles/mi_m1200/is_v130/ai_4305182. Retrieved 8 May 2009. 
  18. ^ Manual of Patent Practice, Section 4. United Kingdom Patent Office. http://www.patent.gov.uk/practice-sec-004.pdf 
  19. ^ See also, for more examples of refused patent applications at the United Kingdom Patent Office (UK-IPO), UK-IPO gets tougher on perpetual motion, IPKat, 12 June 2008. Consulted on June 12, 2008.
  20. ^ Patents Ex parte decision (O/044/06)
  21. ^ http://www.patent.gov.uk/patent/p-decisionmaking/p-challenge/p-challenge-decision-results/o15006.pdf
  22. ^ ECLA classes F03B17/04 and F03B17/00B. Consulted on June 12, 2008.
  23. ^ WO application 2008037004, Kwok, James, "An energy storage device and method of use", published 2008-04-03 
  24. ^ Munk, W.; Wunsch, C (1998). "Abyssal recipes II: energetics of tidal and wind mixing". Deep Sea Research Part I Oceanographic Research Papers 45 (12): 1977. Bibcode 1998DSRI...45.1977M. doi:10.1016/S0967-0637(98)00070-3. 
  25. ^ Ray, R. D.; Eanes, R. J.; Chao, B. F. (1996). "Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry". Nature 381 (6583): 595. Bibcode 1996Natur.381..595R. doi:10.1038/381595a0. 

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Perpetual motion — Motion Mo tion, n. [F., fr. L. motio, fr. movere, motum, to move. See {Move}.] 1. The act, process, or state of changing place or position; movement; the passing of a body from one place or position to another, whether voluntary or involuntary;… …   The Collaborative International Dictionary of English

  • Perpetual motion — Perpetual Per*pet u*al, a. [OE. perpetuel, F. perp[ e]tuel, fr. L. perpetualis, fr. perpetuus continuing throughout, continuous, fr. perpes, etis, lasting throughout.] Neverceasing; continuing forever or for an unlimited time; unfailing;… …   The Collaborative International Dictionary of English

  • Perpetual Motion — (无穷 动, Wu qiong dong) est un film chinois réalisé par Ning Ying, sorti en 2005. Sommaire 1 Synopsis 2 Analyse 3 Réception critique 4 Fiche technique …   Wikipédia en Français

  • perpetual motion — n. the motion of a hypothetical device which, once set in motion, would operate indefinitely by creating its own energy in excess of that dissipated …   English World dictionary

  • perpetual motion — Mech. the motion of a theoretical mechanism that, without any losses due to friction or other forms of dissipation of energy, would continue to operate indefinitely at the same rate without any external energy being applied to it. [1585 95] * * * …   Universalium

  • perpetual motion — noun motion that continues indefinitely without any external source of energy; impossible in practice because of friction • Hypernyms: ↑motion * * * perˌpetual ˈmotion 7 [perpetual motion] noun uncountable …   Useful english dictionary

  • perpetual motion — also perpetual motion N UNCOUNT The idea of perpetual motion is the idea of something continuing to move for ever without getting energy from anything else …   English dictionary

  • perpetual-motion — see perpetual motion …   English dictionary

  • perpetual motion — amžinasis judėjimas statusas T sritis fizika atitikmenys: angl. perpetual motion vok. ewige Bewegung, f rus. вечное движение, n pranc. mouvement perpétuel, m …   Fizikos terminų žodynas

  • perpetual motion — A situation where a device will turn forever because there is no friction between the moving part and the stationary part. Although friction can be greatly reduced, it can never be eliminated. Thus a perpetual motion machine is impossible …   Dictionary of automotive terms