Haboush's theorem


Haboush's theorem

In mathematics Haboush's theorem, often still referred to as the Mumford conjecture, states that for any semisimple algebraic group "G" over a field "K", and for any linear representation ρ of "G" on a "K"-vector space "V", given "v"≠0 in "V" that is fixed by the action of "G", there is a "G"-invariant polynomial "F" on "V" such that

:"F"("v") ≠ 0.

The polynomial can be taken to be homogeneous, in other words an element of a symmetric power of the dual of "V", and if the characteristic is "p">0 the degree of the polynomial can be taken to be a power of "p". When "K" has characteristic 0 this was well known; in fact Weyl's theorem on the complete reducibility of the representations of "G" implies that "F" can even be taken to be linear. Mumford's conjecture about the extension to prime characteristic "p" was proved by W. J. harvtxt|Haboush|1975, about a decade after the problem had been posed by David Mumford, in the introduction to the first edition of his book "Geometric Invariant Theory".

Applications

Haboush's theorem can be used to generalize results of geometric invariant theory from characteristic 0 where they were already known to characteristic "p">0. In particular Nagata's earlier results together with Haboush's theorem show that if a reductive group (over an algebraically closed field) acts on a finitely generated algebra then the fixed subalgebra is also finitely generated.

Haboush's theorem implies that if "G" is a reductive algebraic group acting regularly on an affine algebraic variety, then disjoint closed invariant sets "X" and "Y" can be separated by an invariant function "f" (this means that "f" is 0 on "X" and 1 on "Y").

C.S. Seshadri (1977) extended Haboush's theorem to reductive groups over schemes.

It follows from the work of Nagata, Haboush, and Popov that the following conditions are equivalent for an affine algebraic group "G" over a field "K":
*"G" is reductive (its unipotent radical is trivial).
*For any non-zero invariant vector in a rational representation on "G", there is an invariant homogeneous polynomial that does not vanish on it.
*For any finitely generated "K" algebra acted on rationally by "G", the algebra of fixed elements is finitely generated.

Proof

The theorem is proved in several steps as follows:
*We can assume that the group is defined over an algebraically closed field "K" of characteristic "p">0.
*Finite groups are easy to deal with as one can just take a product over all elements, so one can reduce to the case of connected reductive groups (as the connected component has finite index). By taking a central extension which is harmless one can also assume the group "G" is simply connected.
*Let "A"("G") be the coordinate ring of "G". This is a representation of "G" with "G" acting by left translations. Pick an element "v′" of the dual of "V" that has value 1 on the invariant vector "v". The map "V" to "A"("G") by sending "w"∈"V" to the element "a"∈"A"("G") with "a"("g") = "v"′("g"("w")). This sends "v" to 1∈"A"("G"), so we can assume that "V"⊂"A"("G") and "v"=1.
*The structure of the representation "A"("G") is given as follows. Pick a maximal torus "T" of "G", and let it act on "A"("G") by right translations (so that it commutes with the action of "G"). Then "A"("G") splits as a sum over characters λ of "T" of the subrepresentations "A"("G")λ of elements transforming according to λ. So we can assume that "V" is contained in the "T"-invariant subspace "A"("G")"T" of "A"("G").
*The representation "A"("G")λ is an increasing union of subrepresentations of the form "E"λ+"n"ρ⊗"E""n"ρ, where ρ is the Weyl vector for a choice of simple roots of "T", "n" is a positive integer, and "E"μ is the space of sections of the line bundle over "G"/"B" corresponding to a character μ of "T", where "B" is a Borel subgroup containing "T".
*If "n" is sufficiently large then "E""n"ρ has dimension ("n"+1)"N" where "N" is the number of positive roots. This is because in characteristic 0 the corresponding module has this dimension by the Weyl character formula, and for "n" large enough that the line bundle over "G"/"B" is very ample, "E""n"ρ has the same dimension as in characteristic 0.
*If "q"="p""r" for a positive integer "r", and "n"="q"−1, then "E""n"ρ contains the Steinberg representation of "G"(F"q") of dimension "q""N". (Here F"q" ⊂ "K" is the finite field of order "q".) The Steinberg representation is an irreducible representation of "G"(F"q") and therefore of "G"("K"), and for "r" large enough it has the same dimension as "E""n"ρ, so there are infinitely many values of "n" such that "E""n"ρ is irreducible.
*If "E""n"ρ is irreducible it is isomorphic to its dual, so "E""n"ρ⊗"E""n"ρ is isomorphic to End("E""n"ρ). Therefore the "T"-invariant subspace "A"("G")"T" of "A"("G") is an increasing union of subrepresentations of the form End("E") for representations "E" (of the form "E"("q"−1)ρ)). However for representations of the form End("E") an invariant polynomial that separates 0 and 1 is given by the determinant. This completes the sketch of the proof of Haboush's theorem.

References

*citation|id=MR|0444786
last=Demazure|first= Michel
chapter=Démonstration de la conjecture de Mumford (d'après W. Haboush)|title= Séminaire Bourbaki (1974/1975: Exposés Nos. 453--470)|pages= 138--144|series= Lecture Notes in Math.|volume= 514|publisher= Springer|place= Berlin|year= 1976|doi=10.1007/BFb0080063

*
* Mumford, D.; Fogarty, J.; Kirwan, F. "Geometric invariant theory". Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) (Results in Mathematics and Related Areas (2)), 34. Springer-Verlag, Berlin, 1994. xiv+292 pp. MathSciNet|id=1304906 ISBN 3-540-56963-4
*M. Nagata, "Invariants of a group in an affine ring" J. Math. Kyoto Univ. , 3 (1964) pp. 369–377
* M. Nagata, T. Miyata, "Note on semi-reductive groups" J. Math. Kyoto Univ. , 3 (1964) pp. 379–382
*springer|id=M/m065570|first=V.L. |last=Popov|title=Mumford hypothesis
*C.S. Seshadri, "Geometric reductivity over arbitrary base" Adv. Math. , 26 (1977) pp. 225–274


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • William Haboush — William Joseph Haboush is an American mathematician who is best known for his 1975 proof of one of David Mumford s conjectures, known as the Haboush s theorem.External links*MathGenealogy|id=12398 …   Wikipedia

  • Emmy Noether — Portrait de Emmy Noether avant 1910. Naissance 23 mars 1882 Erlangen (Bavière, Allemagne) Décès 14 avril  …   Wikipédia en Français

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • List of conjectures — This is an incomplete list of mathematical conjectures. They are divided into four sections, according to their status in 2007. See also: * Erdős conjecture, which lists conjectures of Paul Erdős and his collaborators * Unsolved problems in… …   Wikipedia

  • Reductive group — In mathematics, a reductive group is an algebraic group G such that the unipotent radical of the identity component of G is trivial. Any semisimple algebraic group and any algebraic torus is reductive, as is any general linear group.The name… …   Wikipedia

  • Steinberg representation — In mathematics, the Steinberg representation, or Steinberg module, denoted by St , is a particular linear representation of a group of Lie type over a finite field of characteristic p , of degree equal to the largest power of p dividing the order …   Wikipedia

  • Mumford conjecture — There are several conjectures in mathematics by David Mumford. Mumford s conjecture about reductive groups, now called Haboush s theorem. The Mumford conjecture on the cohomology of the stable mapping class group, proved by Ib Madsen and Michael… …   Wikipedia

  • Emmy Noether — Amalie Emmy Noether Born 23 March 1882(1882 03 23) …   Wikipedia

  • Noether — Emmy Noether Emmy Noether Amalie Emmy Noether (23 mars 1882 14 avril 1935) était une mathématicienne allemande connue pour ses contributions révolutionnaires en algèbre abstraite et physique théorique. Décrite par Albert Einstein et d autres… …   Wikipédia en Français


We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.