Antihydrogen is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton.Its (proposed) chemical symbol is H, that is, H with an overbar (pronEng|ˌeɪtʃ ˈbɑr "aitch-bar").

Antihydrogen characteristics

According to the CPT theorem of particle physics, antihydrogen atoms should have many of the characteristics regular hydrogen atoms have, i.e. they should have the same mass, magnetic moment, and transition frequencies (see Atomic spectroscopy) between its atomic quantum states. Excited antihydrogen atoms are for example expected to glow with the same color as that of regular hydrogen. Antihydrogen atoms should be attracted to other matter or antimatter gravitationally with a force of the same magnitude as ordinary hydrogen atoms would experience. This would not be true if antimatter has negative gravitational mass, which is considered highly unlikely, though not yet empirically disproven.

When antihydrogen atoms come into contact with ordinary matter, they quickly annihilate each other and produce energy in the form of gamma rays and high-energy particles called pions. These pions in turn quickly decay into other particles called muons, neutrinos, positrons, and electrons, and these particles rapidly dissipate. If antihydrogen atoms were to be suspended in a perfect vacuum, however, they should survive indefinitely.


In 1995, the CERN laboratory in Geneva first produced antihydrogen by shooting antiprotons, which were produced in a particle accelerator, at xenon clusters. When an antiproton gets close to a xenon nucleus, an electron-positron-pair can be produced, and with some probability the positron will be captured by the antiproton to form antihydrogen. The probability for producing antihydrogen from one antiproton was only about 10-19, so this method is not well suited for the production of substantial amounts of antihydrogen.

In recent experiments carried out by the ATRAP and ATHENA collaborations at CERN, positrons from a sodium radioactive source and antiprotons were brought together in a magnetic Penning trap, where synthesis took place at a typical rate of 100 antihydrogen atoms per second. Antihydrogen was first produced by these two collaborations in 2002, and by 2004 perhaps a hundred thousand antihydrogen atoms were produced in this way.

The antihydrogen atoms synthesized so far have a very high temperature (a few thousand kelvins); they will hit the walls of the experimental apparatus as a consequence and annihilate. A potential solution to this problem would be to produce antihydrogen atoms at such a low temperature (perhaps a fraction of a kelvin) that they can be captured in a magnetic trap.

Simultaneous trapping of antiprotons and antielectrons was reportedcite journal
title=The ingredients of cold antihydrogen: Simultaneous confinement of antiprotons and positrons at 4 K
author=G. Gabrielse
coauthors=D. S. Hall, T. Roach, P. Yesley, A. Khabbaz, J. Estrada, C. Heimann and H. Kalinowsky
journal=Physics Letters B
issue= 1-4
] and the cooling is achievedcite journal
author=G. Andresen
coauthors=at al.
title=Antimatter Plasmas in a Multipole Trap for Antihydrogen
volume= 98
pages= 023402
] ; there are patents on the way of production of antihydrogencite journal
title = Process for the production of antihydrogen
journal=US patent
volume= 6163587
author = Hessels Eric Arthur
year = 2000
month = December
url =
] . In spite of this progress, the confinement time is not yet long, and the antimatter is not yet available at the market.

Antimatter atoms such as antideuterium (D), antitritium (T), and antihelium (He) are much more difficult to produce than antihydrogen. Among these, only antideuterium nuclei have been produced so far, and these have such very high velocities that synthesis of antideuterium atoms may still be many decades ahead.

Natural occurrence

Today, no conclusive spectral signature for the presence of antihydrogen could be reported, since measuring the spectrum of antihydrogen, especially the 1S-2S interval, is exactly the goal of these CERN collaborations.

ee also

*Gravitational interaction of antimatter


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • antihydrogen — an·ti·hy·dro·gen (ăn tē hīʹdrə jən, ăn tī ) n. The antimatter equivalent of hydrogen. * * * …   Universalium

  • antihydrogen — noun a) The antimatter equivalent of hydrogen, consisting of an antiproton and an positron (antielectron). b) An atom of the antimatter equivalent of hydrogen …   Wiktionary

  • antihydrogen — an·ti·hydrogen …   English syllables

  • antihydrogen — ˌ noun Etymology: anti (I) + hydrogen : the antimatter counterpart of hydrogen …   Useful english dictionary

  • Antimatter — For other uses, see Antimatter (disambiguation). Antimatter …   Wikipedia

  • PS210 experiment — The PS210 experiment was the first experiment that led to the observation of antihydrogen atoms produced at the Low Energy Antiproton Ring LEAR at CERN in 1995. The antihydrogen atoms were produced in flight and moved at nearly the speed of light …   Wikipedia

  • Gerald Gabrielse — is an American physicist and the George Vasmer Leverett Professor of Physics at Harvard University. In 2007, he was elected a member of the National Academy of Sciences. Education Gerald Gabrielse studied at Trinity Christian College, Illinois… …   Wikipedia

  • Antiwasserstoff — ist das Antimaterie Gegenstück zum Wasserstoff. Der Atomkern besteht aus einem Antiproton, die Atomhülle aus einem Positron. Inhaltsverzeichnis 1 Geschichte der Antiwasserstoffherstellung 2 Siehe auch 3 Literatur …   Deutsch Wikipedia

  • ATHENA — was an antimatter research project that took place at the AD Ring at CERN. In 2005 ATHENA was disbanded and many of the former members became the ALPHA Collaboration. In August 2002, it was the first experiment to produce 50,000 low energy… …   Wikipedia

  • Gravitational interaction of antimatter — The gravitational interaction of antimatter with matter or antimatter has not been conclusively observed by physicists. While the overwhelming consensus among physicists is that antimatter will attract both matter and antimatter at the same rate… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.