Virtual reality in telerehabilitation


Virtual reality in telerehabilitation

Virtual reality in telerehabilitation is a method used first in the training of musculoskeletal patients using asynchronous patient data uploading, and an internet video link. Subsequently, therapists using virtual reality-based telerehabilitation prescribe exercise routines via the web which are then accessed and executed by patients through a web browser. Therapists then monitor the patient's progress via the web and modify the therapy asynchronously without real-time interaction or training. [Cite book |last=Westwood |first=James D. |coauthors=Helene M. Hoffman, Randy S. Haluck, Greg T. Mogel, R. Phillips, Richard A. Robb, K.G. Vosburgh |title=Medicine Meets Virtual Reality 13: The Magical Next Becomes The Medical Now |publisher=IOS Press |date=2005 |isbn=1586034987 |pages=294]

Background

The computer technology that allows development three-dimensional virtual environments consists of both hardware and software. The current popular, technical, and scientific interest in virtual environments is inspired, in large part, by the advent and availability of increasingly powerful and affordable visually oriented, interactive, graphical display systems and techniques lacking only sense and sensibility.

The term "virtualized reality" (VR) was coined and introduced in a paper by Kanade. The traditional virtual reality world is typically constructed using simplistic, artificially created computer-aided design (CAD) models. VR starts with the real-world scene and virtualizes it. [cite book|last=Kanade|first=T.|coauthors= P.J. Narayanan and P.W. Rander| title=IEEE Workshop on Representation of Visual Scenes, 1995, Proceedings |chapter=Virtualized Reality: Concepts and Early Results|pages=69–76|doi=10.1109/WVRS.1995.476854|isbn=0-8186-7122-X|publisher=Los Alamitos, Calif. : IEEE Computer Society Press, c1995.] Virtual reality is a practical, affordable technology for the practice of clinical medicine, and modern, high-fidelity virtual reality systems have practical applications in areas ranging from psychiatry to surgical planning and telemedicine. [cite journal | last = Bergeron | first = B. | year = 2003 | title = Virtual reality applications in clinical medicine | journal = Journal of Medical Practice Management | volume = 18 | issue = 4 | pages = 211–5 | pmid = 12661483] Through VR’s capacity to allow the creation and control of dynamic 3-dimensional, ecologically valid stimulus environments within which behavioral response can be recorded and measured, it offers clinical assessment and rehabilitation options not available with traditional methods. [cite journal | last = Schultheis | first = Maria T. | coauthors = Albert A. Rizzo | year = 2001 | month = August | title = The application of virtual reality technology in rehabilitation | journal = Rehabilitation Psychology | volume = 46 | issue = 3 | pages = 296–311 | id = ISSN|0090-5550 | doi = 10.1037/0090-5550.46.3.296 ]

Application

The value of VR systems for the investigation and rehabilitation of cognitive and perceptual impairments and current and potential applications of VR technology address six . The system was effective as a training device; in addition, the technology might have a wider applicability to the rehabilitation field. [cite journal | last = Song | first = Chul Gyu | coauthors = Jong Yun Kim and Nam Gyun Kim | year = 2004 | month = June | title = A new postural balance control system for rehabilitation training based on virtual cycling | journal =IEEE Transactions on Information Technology in Biomedicine | volume = 8 | issue = 2 | pages = 200–207 | doi =10.1109/TITB.2004.828887 | pmid = 15217265 ]

Tracy and Lathan investigated the relationship between motor tasks and participants' spatial abilities by training participants within a VR based simulator and then observing their ability to transfer training from the simulator to the real world. The study demonstrated that subjects with lower spatial abilities achieved significant positive transfer from a simulator based training task to a similar real world robotic operation task. [cite journal | last = Tracey | first = M. R. | coauthors = C. E. Lathan | year = 2001 | title = The interaction of spatial ability and motor learning in the transfer of training from a simulator to a real task | journal = Studies in Health Technology and Informatics | volume = 81 | pages = 521–7 | id = ISBN 1-58603-143-0, PMID 11317801 ]

Virtual environments were applied to assess the training of inexperienced powered wheelchair users and demonstrated that the two virtual environments represent a potentially useful means of assessing and training novice powered wheelchair users. [cite journal | last = Harrison | first = A. | coauthors = G. Derwent, A. Enticknap, F. D. Rose, E. A. Attree | year = 2002 | title = The role of virtual reality technology in the assessment and training of inexperienced powered wheelchair users | journal = Disability & Rehabilitation | volume = 24 | issue = 11-12 | pages = 599–606 | doi =10.1080/09638280110111360 | pmid = 12182799 ] A recently completed project at the University of Strathclyde has resulted in the development of a wheelchair motion platform which, in conjunction with a virtual reality facility, can be used to address issues of accessibility in the built environment. [cite conference | first = M. | last = Grant | title =Wheelchair Simulation in Virtual Reality | booktitle =Space Requirements for Wheeled Mobility: An International Workshop, Amherst, 2003 | url =http://www.ap.buffalo.edu/idea/space%20workshop/Papers/Michael%20Grant/M%20Grant%20-%20wheelchair%20simulation%20in%20VR.htm | accessdate =2006-07-26 ]

Many cases have applied virtual reality technology to telemedicineand telerehabilitation service development. Because telemedicine focuses principally on transmitting medical information, VR has potential to enhance the practice. State of the art of VR-based telemedicine applications is used in remote or augmented surgery as well as in surgical training, both of which are critically dependent on eye–hand coordination. Recently, however, different researchers have tried to use virtual environments in medical visualization and for assessment and rehabilitation in neuropsychology. [cite journal | last = Riva | first = Giuseppe | coauthors = Luciano Gamberini | year = 2000 | title = Virtual reality in telemedicine | journal = Telemedicine Journal and e-Health | volume = 6 | issue = 3 | pages = 327–40 | doi =10.1089/153056200750040183 | pmid = 11110636 ]

Case studies for VR applications were conducted that were internet deliverable and they identified technical, practical, and user challenges of remote VR treatment programs. [cite journal | last = Rizzo | first = Albert A. | coauthors = Dorothy Strickland and Stéphane Bouchard | year = 2004 | title = The challenge of using virtual reality in telerehabilitation | journal = Telemedicine Journal and e-Health | volume = 10 | issue = 2 | pages = 184–95 | doi =10.1089/tmj.2004.10.184 | pmid = 15319048 ] To improve understanding of deficits in autism and in left visual-spatial neglect, Trepagnier et al. investigated face gaze behavior in autism and right hemisphere stroke, using virtual reality and gaze sensing technology. [cite conference | first = Cheryl | last = Trepagnier | coauthors = Michael J. Rosen and Corinna Lathan | title =Telerehabilitation and virtual reality technology for rehabilitation: preliminary results | booktitle =Conference on Technology and Persons with Disabilities, California State University at Northridge, 1999 | url =http://www.dinf.org/csun_99/session0241.html ]

An at-home stroke telerehabilitation service was developed using virtual reality haptics. [cite journal | last = Rydmark | first = M. | coauthors = J. Boeren and R. Pasher | year = 2002 | title = Stroke rehabilitation at home using virtual reality, haptics and telemedicine | journal = Studies in Health Technology and Informatics | volume = 85 | pages = 434–7 | id = ISBN 1-58603-203-8, PMID 15458128 ] Researchers from Rutgers University and Stanford University developed a virtual reality-based orthopedic telerehabilitation system. [cite journal | last = Burdea | first = G. C. | coauthors = V. G. Popescu, V. R. Hentz and K. Colbert | year = 2000 | month = September | title = Virtual reality-based orthopedic telerehabilitation | journal =IEEE Transactions on Rehabilitation Engineering | volume = 8 | issue = 3 | pages = 430–2 | doi =10.1109/86.867886 | pmid = 11001524 ] [cite journal | last = Popescu | first = V. G. | coauthors = G. C. Burdea, M. Bouzit and V. R. Hentz | year = 2000 | month = March | title = A virtual-reality-based telerehabilitation system with force feedback | journal =IEEE Transactions on Information Technology in Biomedicine | volume = 4 | issue = 1 | pages = 45–51 | doi =10.1109/4233.826858 | pmid = 10761773 ] [cite journal | last = Burdea | first = G. C. | year = 2003 | title = Virtual rehabilitation—benefits and challenges | journal = Methods of Information in Medicine | volume = 42 | issue = 5 | pages = 519–23 | pmid = 14654886 ]

The use of virtual reality technologies in the rehabilitation of patients with vestibular system disorders and in the provision of remote medical consultation for those patients. He stated that an appropriately designed VR experience could greatly increase the rate of adaptation in these patients. [cite journal | last = Viirre | first = E. | year = 1996 | title = Vestibular telemedicine and rehabilitation | journal = Studies in Health Technology and Informatics | volume = 29 | pages = 299–305 | id = ISBN 90-5199-250-5, PMID 10163763 ]

ee also

*Computationally Advanced Infrastructure Partnerships Center

References


Wikimedia Foundation. 2010.