Cloud feedback

Cloud feedback

Cloud feedback is the coupling between cloudiness and surface air temperature in which a change in radiative forcing perturbs the surface air temperature, leading to a change in clouds, which could then amplify or diminish the initial temperature perturbation.

Global warming is expected to change the distribution and type of clouds. Seen from below, clouds emit infrared radiation back to the surface, and so exert a warming effect; seen from above, clouds reflect sunlight and emit infrared radiation to space, and so exert a cooling effect.[1] Cloud representations vary among global climate models, and small changes in cloud cover have a large impact on the climate.[2][3] Differences in planetary boundary layer cloud modeling schemes can lead to large differences in derived values of climate sensitivity. A model that decreases boundary layer clouds in response to global warming has a climate sensitivity twice that of a model that does not include this feedback.[4] However, satellite data show that cloud optical thickness actually increases with increasing temperature.[5] Whether the net effect is warming or cooling depends on details such as the type and altitude of the cloud; details that are difficult to represent in climate models.

In addition to how clouds themselves will respond to increased temperatures, there exist other feedbacks that will affect clouds properties and formation. The amount and vertical distribution of water vapor is closely linked to the formation of clouds. Ice crystals have been shown to largely influence the amount of water vapor.[6] Water vapor in the subtropical upper troposphere has been linked to the convection of water vapor and ice. Changes in subtropical humidity could provide a negative feedback that decreases the amount of water vapor which would act to mediate global climate transitions.[7]

Changes in cloud cover are closely coupled with other feedback, including the water vapor feedback and ice-albedo feedback. Changing climate is expected to alter the relationship between cloud ice and supercooled cloud water, which in turn would influence the microphysics of the cloud which would result in changes in the radiative properties of the cloud. Climate models suggest that a warming will increase fractional cloudiness. More clouds cools the climate, resulting in a negative feedback.[8] Increasing temperatures in the polar regions is expected in increase the amount of low-level clouds, whose stratification prevents the convection of moisture to upper levels. This feedback would partially cancel the increased surface warming due to the cloudiness.[9]


  1. ^ Hartmann, D.L., M.E. Ockert-Bell, and M.L. Michelsen (1992). "The Effect of Cloud Type on Earth's Energy Balance: Global Analysis". J. Climate 5: 1281–1304. Bibcode 1992JCli....5.1281H. doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2. 
  2. ^ Cess, R. D., et al. (1990). "Intercomparison and Interpretation of Climate Feedback Processes in 19 Atmospheric General Circulation Models". J. Geophys. Res. 95 (D10): 16,601–16,615. 
  3. ^ Stocker, T.F., et al. (2001). "Physical climate processes and feedbacks". In J.T. Houghton, et al.. Climate Change 2001: The Scientific Basis, Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, U.K.: Cambridge University Press. 
  4. ^ National Research Council (2004). Understanding Climate Change Feedbacks. Panel on Climate Change Feedbacks, Climate Research Committee. National Academies Press. ISBN 0309090725. 
  5. ^ Tselioudis, G., W.B. Rossow, and D. Rind (1992). "Global Patterns of Cloud Optical Thickness Variation with Temperature". J. Climate 5: 1484–1495. Bibcode 1992JCli....5.1484T. doi:10.1175/1520-0442(1992)005<1484:GPOCOT>2.0.CO;2. 
  6. ^ Donner, L. J., C. J. Seman, B. J. Soden, R. S. Hemler, J. C. Warren, J. Ström, and K.-N. Liou (1997). "Large-scale ice clouds in the GFDL SKYHI general circulation model". J. Geophys. Res. 102 (D18): 21,745–21,768. Bibcode 1997JGR...10221745D. doi:10.1029/97JD01488. 
  7. ^ Pierrehumbert, R. T., and R. Roca (1998). "Evidence for Control of Atlantic Subtropical Humidity by Large Scale Advection". Geophys. Res. Lett. 25 (24): 4537–4540. Bibcode 1998GeoRL..25.4537P. doi:10.1029/1998GL900203. 
  8. ^ Fowler, L.D., and D.A. Randall (1996). "Liquid and Ice Cloud Microphysics in the CSU General Circulation Model. Part III: Sensitivity to Modeling Assumptions". J. Climate 9: 561–586. Bibcode 1996JCli....9..561F. doi:10.1175/1520-0442(1996)009<0561:LAICMI>2.0.CO;2. 
  9. ^ Wetherald, R., and S. Manabe (1988). "Cloud Feedback Processes in a General Circulation Model". J. Atmos. Sci. 45: 1397–1416. Bibcode 1988JAtS...45.1397W. doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2. 

Wikimedia Foundation. 2010.

См. также в других словарях:

  • Cloud — For other uses, see Cloud (disambiguation). Cumulus cloudscape over Swifts Creek, Australia A cloud …   Wikipedia

  • Cloud forcing — (sometimes described as cloud radiative forcing) is, in meteorology, the difference between the radiation budget components for average cloud conditions and cloud free conditions. Much of the interest in cloud forcing relates to its role as a… …   Wikipedia

  • Climate change feedback — See also: Avoiding dangerous climate change, Runaway climate change, and Abrupt climate change Climate change feedback is important in the understanding of global warming because feedback processes may amplify or diminish the effect of each… …   Wikipedia

  • Cirrus cloud — A sky filled with many types of cirrus clouds Cirrus clouds (cloud classification symbol: Ci) are atmospheric clouds generally characterized by thin, wispy strands, giving them their name from the Latin word cirrus meaning a ringlet or curling… …   Wikipedia

  • Global warming controversy — refers to a variety of disputes, significantly more pronounced in the popular media than in the scientific literature,[1][2] regarding the nature, causes, and consequences of global warming. The disputed issues involve the causes of increased… …   Wikipedia

  • Iris hypothesis — The iris hypothesis is a theory proposed by Prof. Richard Lindzen in 2001 [ [ R.S. Lindzen, M. D. Chou, and A.Y. Hou (2001) Does the Earth have an adaptive infrared iris? Bull. Amer. Met. Soc. 82 …   Wikipedia

  • Climate sensitivity — is a measure of how responsive the temperature of the climate system is to a change in the radiative forcing. It is usually expressed as the temperature change associated with a doubling of the concentration of carbon dioxide in Earth s… …   Wikipedia

  • Richard Lindzen — Richard S. Lindzen Born 8 February 1940 (1940 02 08) (age 71) Webster, Massachusetts Fields Atmospheric physics …   Wikipedia

  • Roy Spencer (scientist) — Roy W. Spencer Ph.D. is a principal research scientist for the University of Alabama in Huntsville and the U.S. Science Team Leader for the Advanced Microwave Scanning Radiometer (AMSR E) on NASA’s Aqua satellite. He has served as senior… …   Wikipedia

  • List of meteorology topics — This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting. (see also: List of meteorological phenomena)AlphanumericTOC… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»