Chloroflexus aurantiacus

Chloroflexus aurantiacus
Chloroflexus aurantiacus
Chloroflexus aurantiacus
Scientific classification
Kingdom: Bacteria
Division: Chloroflexi
Class: Chloroflexi
Order: Chloroflexales
Family: Chloroflexaceae
Genus: Chloroflexus
Species: C. aurantiacus
Binomial name
Chloroflexus aurantiacus
Thermophilic Organisms

Chloroflexus aurantiacus is a photosynthetic bacterium isolated from hot springs, belonging to the green non-sulfur bacteria. This organism is thermophilic and can grow at temperatures from 35 °C to 70 °C. Chloroflexus aurantiacus can survive in the dark if oxygen is available. When grown in the dark, Chloroflexus aurantiacus has a dark orange color. When grown in sunlight it is dark green. The individual bacteria tend to form filamentous colonies enclosed in sheaths, which are known as trichomes.

Contents

Physiology

As a genus, Chloroflexus spp. are gram negative filamentous anoxygenic phototrophic (FAP) organisms that utilize type II photosynthetic reaction centers containing bacteriochlorophyll a similar to the purple bacteria, and light-harvesting chlorosomes containing bacteriochlorophyll c similar to green sulfur bacteria of the Chlorobi.

As the name implies, these anoxygenic phototrophs do not produce oxygen as a byproduct of photosynthesis, in contrast to oxygenic phototrophs such as cyanobacteria, algae, and higher plants. While oxygenic phototrophs use water as an electron donor for phototrophy, Chloroflexus uses reduced sulfur compounds such as hydrogen sulfide, thiosulfate, or elemental sulfur. This belies their antiquated name green non-sulfur bacteria, however Chloroflexus spp. can also utilize hydrogen(H2) as a source of electrons.

Chloroflexus aurantiacus is thought to grow photoheterotrophically in nature, but it has the capability of fixing inorganic carbon through photoautotrophic growth. Instead of using the Calvin-Benson-Bassham Cycle typical of plants, Chloroflexus aurantiacus has been demonstrated to use a novel autotrophic pathway known as the 3-Hydroxypropionate pathway.

The complete electron transport chain for Chloroflexus spp. is not yet known. Particularly, Chloroflexus aurantiacus has not been demonstrated to have a cytochrome bc1 complex, and may use different proteins to reduce cytochrome c

Evolution of photosynthesis

One of the main reasons for interest in Chloroflexus aurantiacus is in the study of the evolution of photosynthesis. As terrestrial mammals, we are most familiar with photosynthetic plants such as trees. However, photosynthetic eukaryotes are a relatively recent evolutionary development. Photosynthesis by eukaryotic organisms can be traced back to endosymbiotic events in which non-photosynthetic eukaryotes internalized photosynthetic organisms. The chloroplasts of trees still retain their own DNA as a molecular remnant that indicated their origin as photosynthetic bacteria.

The "respiration early" hypothesis

How did photosynthesis arise in bacteria? The answer to this question is complicated by the fact that there are several types of light-harvesting energy capture systems. Chloroflexus aurantiacus has been of interest in the search for origins of the so-called type II photosynthetic reaction center. One idea is that bacteria with respiratory electron transport evolved photosynthesis by coupling a light-harvesting energy capture system to the pre-existing respiratory electron transport chain. Thus, rare organisms like Chloroflexus aurantiacus that can survive using either respiration or photosynthesis are of interest in on-going attempts to trace the evolution of photosynthesis.

See also

References

  1. Pierson BK, Castenholz RW (1974). "A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov". Arch. Microbiol. 100 (1): 5–24. doi:10.1007/BF00446302. PMID 4374148. 
  2. Oelze J, Fuller RC (1 July 1983). "Temperature dependence of growth and membrane-bound activities of Chloroflexus aurantiacus energy metabolism". J. Bacteriol. 155 (1): 90–6. PMC 217656. PMID 6863222. http://jb.asm.org/cgi/pmidlookup?view=long&pmid=6863222. 
  3. Sprague SG, Staehelin LA, DiBartolomeis MJ, Fuller RC (1 September 1981). "Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus". J. Bacteriol. 147 (3): 1021–31. PMC 216142. PMID 7275928. http://jb.asm.org/cgi/pmidlookup?view=long&pmid=7275928. 
  4. Xiong J, Bauer CE (October 2002). "A cytochrome b origin of photosynthetic reaction centers: an evolutionary link between respiration and photosynthesis". J. Mol. Biol. 322 (5): 1025–37. doi:10.1016/S0022-2836(02)00822-7. PMID 12367526. http://linkinghub.elsevier.com/retrieve/pii/S0022283602008227. 
  5. Beanland TJ (August 1990). "Evolutionary relationships between "Q-type" photosynthetic reaction centres: hypothesis-testing using parsimony". J. Theor. Biol. 145 (4): 535–45. doi:10.1016/S0022-5193(05)80487-4. PMID 2246901. 
  6. Castresana J, Saraste M (November 1995). "Evolution of energetic metabolism: the respiration-early hypothesis". Trends Biochem. Sci. 20 (11): 443–8. doi:10.1016/S0968-0004(00)89098-2. PMID 8578586. http://linkinghub.elsevier.com/retrieve/pii/S0968000400890982. 

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Chloroflexus aurantiacus — ? Chloroflexus aurantiacus Научная классификация Царство: Бактерии Тип: Chloroflexi Класс: Chloroflexi …   Википедия

  • Chloroflexus aurantiacus —   Chloroflexus aurantiacus …   Wikipedia Español

  • 3-Hydroxypropionatzyklus — Übergeordnet Kohlenstoffdioxid Assimilation Gene Ontology …   Deutsch Wikipedia

  • Plastocyanin family of copper binding proteins — Pfam box Symbol = Copper bind Name = Copper binding proteins, plastocyanin/azurin family width = caption = Pfam= PF00127 InterPro= IPR000923 SMART= PROSITE = PDOC00174 SCOP = 1plc TCDB = OPM family= 101 OPM protein= 1sfd PDB=PDB3|1id2C:44 132… …   Wikipedia

  • Liste sequenzierter Organismen — Unter sequenzierten Organismen versteht man Lebewesen, deren DNA Sequenz des Genoms durch DNA Sequenzierung (nahezu) vollständig bekannt ist. Teilweise liegen zu den DNA Sequenzen auch schon vollständige Annotationen und Kartierungen der… …   Deutsch Wikipedia

  • Chloroflexi — ? Chloroflexi Научная классификация Царство: Бактерии Тип: Chloroflexi Класс: Chloroflexi …   Википедия

  • Chlorosome — A Chlorosome is a photosynthetic antenna complex found in green sulfur bacteria (GSB) and some green filamentous anoxygenic phototrophs (FAP) (Chloroflexaceae, Oscillochloridaceae). They differ from other antenna complexes by their large size and …   Wikipedia

  • Chlorosom — Als Chlorosomen (von altgriechisch χλωρός, chlorós hellgrün, frisch und σῶμα soma Körper) werden intrazelluläre Organellen Photosynthese betreibender Grüner Schwefelbakterien und Grüner Nichtschwefelbakterien (Chloroflexi) bezeichnet. Chlorosomen …   Deutsch Wikipedia

  • Chlorosomen — Als Chlorosomen (von altgriechisch χλωρός, chlorós hellgrün, frisch und Soma Körper) werden intrazelluläre Organellen Photosynthese betreibender Grüner Schwefelbakterien und Grüner Nichtschwefelbakterien (Chloroflexi) bezeichnet. Chlorosomen sind …   Deutsch Wikipedia

  • Heliobacteria — Heliobacteriaceae Systematik Domäne: Bakterien Abteilung: Firmicutes Klasse: Clostridia Ordnung …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”