Technological and industrial history of the United States

Technological and industrial history of the United States

The technological and industrial history of the United States describes the United States' emergence as one of the largest nations in the world as well as the most technologically powerful nation in the world. The availability of land and labor, the diversity of climate, the ample presence of navigable canals, rivers, and coastal waterways, and the abundance of natural resources facilitating the cheap extraction of energy, fast transport, and the availability of capital all contributed to America's rapid industrialization.

Most historians agree that the period in which the greatest economic and technological progress occurred was between the end of the 18th century and the beginning of the 20th. During this period the nation was transformed from a primitive agricultural economy to the foremost industrial power in the world, with more than a third of the global industrial output. This can be illustrated by the index of total industrial production, with increased from only 4.29 in 1790 to 1975 in 1913, an increase of 460 times (base year 1850 - 100). [cite web|url=http://www.nber.org/data/industrial-production-index/ip-total.html |title=Industrial Production Index |publisher=National Bureau of Economic Research |accessdate=2007-08-03]

American colonies gained independence in 1781 just as profound changes in industrial production and coordination were beginning to shift production from artisans to potters. Growth of the nation's transportation infrastructure and a confluence of technological innovations before the Civil War facilitated an expansion in organization, coordination, and scale of industrial production. Around the turn of the 20th century, American industry had superseded its European counterparts economically and the nation began to assert its military power. Although the Great Depression challenged its technological momentum, America emerged from World War II as one of two global superpowers. In the second half of the 20th century as the United States was drawn into competition with the Soviet Union for political, economic, and military primacy, the government investing heavily in scientific research and technological development which spawned advances in spaceflight, computing, and biotechnology.

Science, technology, and industry have not only profoundly shaped America's economic success, but have also contributed to its distinct political institutions, social structure, educational system, and cultural identity. American values of meritocracy, entrepreneurialism, and self-sufficiency are drawn from its legacy of pioneering technical advances.

Pre-European technology

North America has been inhabited continuously since approximately 10,000 BC. The earliest inhabitants were nomadic, big-game hunter-gatherers who crossed the Bering land bridge. These first Native Americans relied upon chipped stone spearheads, rudimentary harpoons, and boats clad in animal-hides for hunting in the Arctic. As they dispersed within the continent, they encountered the varied temperate climates in the Pacific northwest, central plains, Appalachian woodlands, and arid southwest where they began to make permanent settlements. The peoples living in the Pacific northwest built wooden houses, used nets and weirs to catch fish, and practiced food preservation, although substantial agriculture was not developed. [Harvard reference |last=Cowan |first=Ruth Schwartz |title=A Social History of American Technology |publisher=Oxford University Press |place=New York |year=1997 |p=7-8 |isbn=0-19-504606] Peoples living on the plains remained largely nomadic (some practiced agriculture for parts of the year) and became adept leather workers as they hunted buffalo while people living in the arid southwest built adobe buildings, fired pottery, domesticated cotton, and wove cloth. Tribes in the eastern woodlands and Mississippian Valley developed extensive trade networks, built pyramid-like mounds, and practiced substantial agriculture while the peoples living in the Appalachian Mountains and coastal Atlantic practiced highly sustainable forest agriculture and were expert woodworkers. However, the populations of these peoples were small and their rate of technological change was very low. [Harvnb|Cowan|1997|pp=10] Indigenous peoples did not domesticate animals for drafting or husbandry, develop writing systems, or create bronze or iron-based tools like their Eurasian counterparts.

European exploration and settlement

The discovery of the "New World" by Europeans explorers in the 15th and 16th centuries and subsequent Columbian Exchange profoundly changed the direction of technological development in North America. State-sponsored explorers like the Spanish Conquistadors arrived in the New World with technology unknown to the native inhabitants — caravels, domesticated horses, iron armour and swords.

Agriculture

In the 17th century, Pilgrims, Puritans, Quakers fleeing religious persecution in Europe brought with them plowshares, guns, and domesticated animals like cows and pigs. These immigrants and other European colonists initially farmed subsistence crops like corn, wheat, rye, oats as well as rendering potash and maple syrup for trade. [Harvnb|Cowan|1997|pp=30] In the more temperate southern climates, large-scale plantations grew labor-intensive cash crops like sugarcane, rice, cotton, and tobacco requiring native and imported African slave labor to maintain. Early American farmers were not self-sufficient; they relied upon other farmers, specialized craftsman, and merchants to provide tools, process their harvests, and bring them to market. [Harvnb|Cowan|1997|pp=40-43]

Artisanship

Colonial artisanship emerged slowly as harsh travel and living conditions in America discouraged skilled craftsman from crossing the Atlantic and bringing their tools with them. However, because of this, American craftsmen were unencumbered by the various long-standing allegiances of European craft guilds that sometimes stifled advances in technology out of economic self-interest. American artisans developed their own apprenticeship system for educating and employing the young. Despite the fact that mercantilist, export-heavy economy impaired the emergence of a robust self-sustaining economy, these craftsman and merchants developed a growing interdependence on each other for their trades. [Harvnb|Cowan|1997|pp=63-65] In the mid-18th century, attempts by the British to subdue or control the colonies by means of taxation sowed increased discontent among these artisan and merchants in urban Boston, New York, and Philadelphia who increasingly advocated independence from British rule.

Early industrialization

American industrialization was facilitated by a unique confluence of geographical, social, and economic factors. The post-Revolution American population remained low relative to its European counterparts and the demand for manual labor created strong incentives to mechanize labor-intensive tasks. The eastern seaboard of the United States, with a great number of rivers and streams along the Atlantic seaboard, provided many potential sites for constructing mills and infrastructure necessary for early industrialization. In addition, the United States' perpetually limited labor supply and vast supply of natural resources removed the primary obstacles to industrialization in European nations.

After the close of the American Revolution in 1783, the new government provided strong property rights and a nonrigid class structure. The idea of issuing patents was brought to North America by English, French, and Dutch settlers in the 17th and 18th centuries and adopted into Article I, Section 8 of the United States Constitution authorizing Congress "to promote the progress of science and useful arts by securing for limited times to authors and inventors the exclusive right to their respective writings and discoveries."

Factories and mills

In the mid 1780s, Oliver Evans invented the grain elevator and hopper boy that would eventually replace the traditional gristmills. By the turn of the century, Evans also developed one of the first high-pressure steam engines and began establishing a network of machine workshops to manufacture and repair these popular inventions. In 1789, the widow of Nathanael Greene recruited Eli Whitney to develop a machine to separate the seeds of short fibered cotton from the fibers. The resulting cotton gin could be made with basic carpentry skills but reduced the necessary labor by a factor of 50 and generated huge profits for cotton growers in the South. [Harvnb|Cowan|1997|pp=77] While Whitney did not realize financial success from his invention, he moved on to manufacturing rifles and other armaments under government contract that could be made with "expedition, uniformity, and exactness" — the foundational ideas for interchangeable parts. [Harvnb|Cowan|1997|pp=80]

Between 1800 and 1820, new industrial tools that rapidly increased the quality and efficiency of manufacturing emerged. Simeon North suggested using division of labor to increase the speed with which a complete pistol could be manufactured which led to the development of a milling machine in 1798. In 1819, Thomas Blanchard created a lathe that could reliably cut irregular shapes, like those needed for arms manufacture. By 1822, Captain John H. Hall had developed a system employing special machines, division of labor, and an unskilled workforce to produce a breech-loading rifle — a process that came to be known as "Armory practice" in the U.S. and the "American system of manufacture" in England. [Harvnb|Cowan|1997|pp=81-82]

The textile industry, which had previously relied upon labor-intensive production methods, was also rife with potential for mechanization. In the late 18th century, the English textile industry had adopted the spinning jenny, water frame, and spinning mule which greatly improved the efficiency and quality of textile manufacture, but were closely guarded by the British government which forbade their export or the emigration of those who were familiar with the technology. Samuel Slater, an apprentice in one of the largest textile factories in England, immigrated to the United States in 1789 upon learning that American states were paying bounties to British expatriates with a knowledge of cotton machinery. [Harvnb|Cowan|1997|pp=83] With Moses Brown, Slater established the first textile factory in the US in Pawtucket, Rhode Island. Slater went on to build several more cotton and wool mills throughout New England, but when faced with a labor shortage, resorted to building housing, shops, and churches for the workers and their families adjacent to his factories. Slater's business model of independent mills and mill villages began to be replaced by the 1820s by a more efficient system based upon Francis Cabot Lowell's replications of British power looms. These Lowell looms combined spinning and weaving, were highly mechanized, managed by specialized employees, employed with unmarried young women ("mill girls"), and owned by a corporation. [Harvnb|Cowan|1997|pp=87] Unlike the previous forms of labor (apprenticeship, familial, or enslaved/indentured), the "Lowell system" popularized the concept of wage laborer who sells his labor to an employer under contract — a socio-economic system which persists in many modern countries and industries.

Turnpikes and canals

The thirteen United States likewise controlled a greater area (from New Hampshire to Georgia) than any European nation since the fall of the Roman Empire.Fact|date=September 2008 Even as the country grew even larger with the admission of Kentucky, Tennessee, and Ohio by 1803, the only means of transportation between these landlocked western states and their coastal neighbors was by foot, pack animal, or ship. Recognizing the success of Roman roads in unifying that empire, political and business leaders in the United States began to construct roads and canals to connect the disparate parts of the nation. [Harvnb|Cowan|1997|pp=94]

Early toll roads were constructed and owned by joint-stock companies that sold stock to raise construction capital like Pennsylvania's 1795 Lancaster Turnpike Company. In 1808, Secretary of the Treasury Albert Gallatin's "Report on the Subject of Public Roads and Canals" suggested that the federal government should fund the construction of interstate turnpikes and canals. While many Anti-Federalists opposed the federal government assuming such a role, the British blockade in the War of 1812 demonstrated the United States' reliance upon these overland roads for military operations as well as for general commerce. [Harvnb|Cowan|1997|pp=98] Construction on the National Road began in 1815 in Cumberland, Maryland and reached Wheeling, Virginia in 1818, but political strife thereafter ultimately prevented its western advance to the Mississippi River. Nevertheless, the road became a primary overland conduit through Appalachian Mountains and was the gateway for thousands of antebellum westward-bound settlers.

Numerous canal companies had also been chartered; but of all the canals projected, only three had been completed when the War of 1812 began: the Dismal Swamp Canal in Virginia, the Santee Canal in South Carolina, and the Middlesex Canal in Massachusetts. It remained for New York to usher in a new era in internal communication by authorizing in 1817 the construction of the Erie Canal. This bold bid for Western trade alarmed the merchants of Philadelphia, particularly as the completion of the national road threatened to divert much of their traffic to Baltimore. In 1825, the legislature of Pennsylvania grappled with the problem by projecting a series of canals which were to connect its great seaport with Pittsburgh on the west and with Lake Erie and the upper Susquehanna on the north. [Harvard reference |last=Johnson |first=Allen |authorlink=Allen Johnson (scholar) |title=Union and Democracy |publisher=Houghton Mifflin Company |place=Cambridge, Massachusetts |year=1915 |p=255-256 ]

Like the turnpikes, the early canals were constructed, owned, and operated by private joint-stock companies but later gave way to larger projects funded by the states. The Erie Canal, proposed by Governor of New York De Witt Clinton, was the first canal project undertaken as a public good to be financed at the public risk through the issuance of bonds. [Harvnb|Cowan|1997|pp=102] When the project was completed in 1825, the canal linked Lake Erie with the Hudson River through 83 separate locks and over a distance of convert|363|mi|km|0. The success of the Erie Canal spawned a boom of other canal-building around the country: over 3,326 miles of artificial waterways were constructed between 1816 and 1840. [Harvnb|Cowan|1997|pp=104] Small towns like Syracuse, New York, Buffalo, New York, and Cleveland, Ohio that lied along major canal routes boomed into major industrial and trade centers, while exuberant canal-building pushed some states like Pennsylvania, Ohio, and Indiana to the brink of bankruptcy. [Harvnb|Cowan|1997|pp=104]

The magnitude of the transportation problem was such, however, that neither individual states nor private corporations seemed able to meet the demands of an expanding internal trade. As early as 1807, Albert Gallatin had advocated the construction of a great system of internal waterways to connect East and West, at an estimated cost of $20,000,000. But the only contribution of the national government to internal improvements during the Jeffersonian era was an appropriation in 1806 of two percent of the net proceeds of the sales of public lands in Ohio for the construction of a national road, with the consent of the states through which it should pass. By 1818 the road was open to traffic from Cumberland, Maryland, to Wheeling, West Virginia. [Harvnb|Johnson|1915|pp=256]

In 1816, with the experiences of the war before him, no well-informed statesman could shut his eyes to the national aspects of the problem. Even President Madison invited the attention of Congress to the need of establishing "a comprehensive system of roads and canals". Soon after Congress met, it took under consideration a bill drafted by Calhoun which proposed an appropriation of $1,500,000 for internal improvements. Because this appropriation was to be met by the moneys paid by the National Bank to the government, the bill was commonly referred to as the "Bonus Bill". But on the day before he left office, President Madison vetoed the bill because it was unconstitutional. The policy of internal improvements by federal aid was thus wrecked on the constitutional scruples of the last of the Virginia dynasty. Having less regard for consistency, the House of Representatives recorded its conviction, by close votes, that Congress could appropriate money to construct roads and canals, but had not the power to construct them. As yet the only direct aid of the national government to internal improvements consisted of various appropriations, amounting to about $1,500,000 for the Cumberland Road. [Harvnb|Johnson|1915|pp=257-258]

As the country recovered from financial depression following the Panic of 1819, the question of internal improvements again forged to the front. In 1822, a bill to authorize the collection of tolls on the Cumberland Road had been vetoed by the President. In an elaborate essay Monroe set forth his views on the constitutional aspects of a policy of internal improvements. Congress might appropriate money, he admitted, but it might not undertake the actual construction of national works nor assume jurisdiction over them. For the moment the drift toward a larger participation of the national government in internal improvements was stayed. Two years later, Congress authorized the President to institute surveys for such roads and canals as he believed to be needed for commerce and military defense. No one pleaded more eloquently for a larger conception of the functions of the national government than Clay. He called the attention of his hearers to provisions made for coast surveys and lighthouses on the Atlantic seaboard and deplored the neglect of the interior of the country. Of the other presidential candidates, Jackson voted in the Senate for the general survey bill; and Adams left no doubt in the public mind that he did not reflect the narrow views of his section on this issue. Crawford felt the constitutional scruples which were everywhere being voiced in the South, and followed the old expedient of advocating a constitutional amendment to sanction national internal improvements. [Harvnb|Johnson|1915|pp=309-310]

In President Adams' first message to Congress, he advocated not only the construction of roads and canals but also the establishment of observatories and a national university. President Jefferson had recommended many of these in 1806 for Congress to consider for creation of necessary amendments to the Constitution. Adams seemed oblivious to the limitations of the Constitution. In much alarm Jefferson suggested to Madison the desirability of having Virginia adopt a new set of resolutions, bottomed on those of 1798, and directed against the acts for internal improvements. In March, 1826, the general assembly declared that all the principles of the earlier resolutions applied "with full force against the powers assumed by Congress" in passing acts to protect manufacturers and to further internal improvements. That the Administration would meet with opposition in Congress was a foregone conclusion. [Harvnb|Johnson|1915|pp=319-320]

teamboats

Despite the new efficiencies introduced by the turnpikes and canals, travel along these routes was still time-consuming and expensive. The idea of integrating a steam boiler and propulsion system can be first attributed to John Fitch and James Rumsey who both filed for patents or state monopolies on steamboats in the late 1780s. However, these first steamboats were complicated, heavy, and expensive. It would be almost 20 years until Robert R. Livingston contracted a civil engineer named Robert Fulton to develop an economical steamboat. Fulton's paddle steamer, "The North River Steamboat" (erroneously referred to as the "Clermont"), made its first trip from New York City north on the Hudson River to Albany on August 17, 1807. By 1820, steamboat services had been established on all the Atlantic tidal rivers and Chesapeake Bay. The shallow-bottomed boats were also ideally suited navigating the Mississippi and Ohio Rivers and the number of boats on these rivers increased from 17 boats to 727 boats between 1817 and 1855. [Harvnb|Cowan|1997|pp=108] The speed of the steamboats decreased travel times between coastal ports and upstream cities by weeks and costs for transporting goods along these rivers by as much as 90%. [Harvnb|Cowan|1997|pp=110]

Steamboats profoundly altered the relationships between the federal government, state governments, and private property owners. Livingston and Fulton had obtained monopoly rights to operate a steamboat service within the state of New York, but Thomas Gibbons, who operated a competing New Jersey ferry service, was enjoined from entering New York waters under the terms of the monopoly. In 1824, the Supreme Court ruled in "Gibbons v. Ogden" that Congress could regulate commerce and transportation under the Commerce Clause which compelled the state of New York to allow steamboat services from other states.

Because the physics and metallurgy of boilers were poorly understood, steamboats were prone to boiler explosions that killed hundreds of people between 1810s and 1840s. [Harvard reference |last=Burke |first=John G. |Chapter=Bursting Boilers and the Federal Power |editor=S. Cutcliffe & T. Reynolds |title=Technology and American History |publisher=University of Chicago Press |place=Chicago |year=1997 |pp=109-116 |isbn=0226710289] In 1838, legislation was enacted that mandated boiler inspections by federal agents under the threat of revocation of the operator's navigation licenses and lowered the threshold for liability in suits arising from such accidents. While Americans long resisted any government's power to regulate private property, these new rules demonstrated that many Americans believed that property rights did not override civil rights and set the precedent for future federal safety regulations. [Harvnb|Burke|1997|pp=105-106]

Mining

Civil War

Role of industry & technology in causes, conduct & operations, reconstruction
*Samuel Colt — Invented the revolver, the first repeating pistol
*John Browning - guns

Technological systems and infrastructure

The period after the Civil War was marked by increasing intense and pervasive industrialization and successive technological advances like the railroad, telegraph & telephone, and internal combustion engine. This facilitated America's westward expansion and economic development by connecting the frontier with the industrial, financial, and political centers of the East. Americans increasingly relied upon technological infrastructures like the railroad, electric, and telecommunications systems for economic and social activities.

Railroads

Between 1820 and 1830, many inventors and entrepreneurs began to apply emerging steamboat technology to engines that could travel on land. The earliest proposal came in 1813 from Oliver Evans' idea of a railway to connect New York and Philadelphia with "carriages drawn by steam engines." [Harvnb|Cowan|1997|pp=113] Many individuals and companies have a claim to being the first railroad in the United States, but by the mid 1830s several companies were using steam-powered locomotives to move train cars on rail tracks. Between 1840 and 1860 the total length of railroad trackage increased from convert|3326|mi|km|0 to convert|30600|mi|km|-1. [Harvnb|Cowan|1997|pp=115-117] The efficiency of railroad to move large, bulk items contributed enabled further drops in cost of transporting goods to market but in so doing undermined the profitability of the earlier turnpikes and canals which began to fold and fall into disrepair. However, the early railroads were poorly integrated; there were hundreds of competing companies using different gauges for their track requiring cargo to be trans-shipped — rather than traveling directly — between cities. The completion of the Transcontinental Railroad in 1869 and its attendant profit and efficiency had the effect of stimulating a period of intense consolidation and technological standardization that would last another 50 years. By 1920, convert|254000|mi|km|-2 of standard-gauge railroad track had been laid in the United States, all of it owned or controlled by only seven organizations. [Harvnb|Cowan|1997|pp=154] The need to synchronize train schedules and the inefficiencies introduced by every city having its own local time, also lead to introduction of Standard time by railway managers in 1883.

Iron and steel-making

Because iron does not occur in nature as a pure metal, it must be smelted to drive out impurities and made stronger. Bloomery forges were prevalent in the colonies and could produce small batches of iron to be smithed for local needs (horseshoes, axeblades, plowshares) but were unable to scale production for exporting or larger-scale industry (gunmaking, shipbuilding, wheelmaking). [Harvnb|Cowan|1997|pp=58] Blast furnaces creating pig iron emerged on large self-sufficient plantations in the mid-17th century to meet these demands, but production was expensive and labor-intensive: forges, furnaces, and waterwheels had to be constructed, huge swaths of forest had to be cleared and the wood rendered into charcoal, and iron ore and limestone had to be mined and transported. By the end of the 18th century, the threat of deforestation forced the English to use coke, a fuel derived from coal, to fire their furnaces. This was a practice that was later adopted in the US as well. This shift precipitated a drop in iron prices since the process no longer required enormous quantities of increasingly scarce wood.Fact|date=March 2007

Although steel is a form of iron, historically steel and iron-making were intended for different products given the high costs of steel over wrought iron. Throughout the 18th and early 19th centuries, the English steelmakers produced blister and crucible steel which required specialized equipment like finery forges and puddling furnaces and cost over £50 per long ton.Fact|date=March 2007 In the 18th century, innovations like steamboats, railroads, and guns increased demand for wrought iron and steel. In the 1850s, American William Kelly and Englishman Henry Bessemer independently discovered that air blown through the molten iron increases its temperature and drives off impurities. The Kelly-Bessemer process, because it reduces the amount of coke needed for blasting and increases the quality of the finished iron, revolutionized the mass production of high-quality steel and facilitated a drastic drop in steel prices and expansion of its availability.

In 1868, Andrew Carnegie saw an opportunity to integrate new coke-making methods with the recently developed Kelly-Bessemer process to supply steel for railroads. In 1872, he built a steel plant in Braddock, Pennsylvania at the junction of several major railroad lines. Carnegie earned enormous profits by pioneering vertical integration; he owned the iron ore mines in Minnesota, the transport steamboats on the Great Lakes, the coal mines and coke ovens, and the rail lines delivering the coke and ore to his Pennsylvania mills. By 1900, the Carnegie Steel Company was producing more steel than all of Britain and in 1901 Carnegie sold his business to J.P. Morgan's U.S. Steel earning Carnegie $480 million personally.

Telegraph and telephone

The ability to quickly transmit information over long distances would prove to have an enormous impact on many diverse fields like journalism, banking, and diplomacy. Between 1837 and 1844, Samuel F.B. Morse and Alfred Vail developed a transmitter that could send "short" or "long" electric current which would move an electromagnetic receiver to record the signal as dots and dashes. Morse established the first telegraph line (between Baltimore and Washington D.C.) in 1844 and by 1849 almost every state east of the Mississippi had telegraph service. [Harvnb|Cowan|1997|pp=152] Between 1850 and 1865, the telegraph business became progressively more consolidated and the 1866 incorporation of Western Union emerged with a near-monopoly over 22,000 telegraph offices and convert|827000|mi|km|-2 of cable throughout the country. [Harvnb|Cowan|1997|pp=152] The telegraph was used to dispatch news from the fronts of the Mexican-American War, coordinate Union troop movements during the Civil War, relay stock and commodity prices and orders between markets on ticker tape, and conduct diplomatic negotiations after the Transatlantic telegraph cable was laid in 1866.

Alexander Graham Bell obtained a patent in 1876 to a device that could transmit and reproduce the sound of a voice over electrical cables. Bell realized the enormous potential for his telephone and formed the Bell Telephone Company which would control the whole system from the manufacture the telephones and exchange equipment to leasing the equipment to customers and operators. Between 1877 and 1893 (the term of Bell's patent coverage) the number of phones leased by Bell's company increased from 3,000 to 260,000, although these were largely limited to businesses and government offices that could afford the relatively high rates. [Harvnb|Cowan|1997|pp=160] After the Bell patents expired, thousands of independent operators became incorporated and their competition for services to middle and low-class households as well as rural farmers drove prices down significantly. By 1920, there were 13 million phones in the United States providing service to 39 percent of all farm households and 34 percent of non-farm households. [Harvnb|Cowan|1997|pp=161]

Petroleum

The 1859 discovery of crude oil in western Pennsylvania set off an "oil rush" reminiscent the 1849 California Gold Rush and would prove to be a valuable resource on the eve of the Civil War. Because crude oil needs to be distilled to extract usable fuel oils, oil refining quickly became a major industry in the area. However, the rural and mountainous terrain of these Pennsylvania oilfields allowed neither economical in-situ refining nor efficient railroad transportation of extracted oil. Beginning in 1865, the construction of oil pipelines to connect the oilfields with railroads or oil refineries alleviated this geographical bottleneck but also put thousands of coopers and teamsters (who made the barrels and drove the wagons to transport oil) out of business. [Harvnb|Cowan|1997|pp=158] As the network of oil pipelines expanded, they became more integrated with both the railway and telegraph systems which enabled even greater coordination in production, scheduling, and pricing.

John D. Rockefeller was a forceful driver of consolidation in the American oil industry. Beginning in 1865, he bought refineries, railroads, pipelines, and oilfields and ruthlessly eliminated competition to his Standard Oil. By 1879, he controlled 90% of oil refined in the US. [Harvnb|Cowan|1997|pp=158] Standard Oil used pipelines to directly connect the Pennsylvanian oilfields with the refineries in New Jersey, Cleveland, Philadelphia, and Baltimore, rather than loading and unloading railroad tank cars, which enabled huge gains in efficiency and profitability. Given the unprecedented scale of Standard Oil's network, the company developed novel methods for managing, financing, and organizing its businesses. Because laws governing corporations limited their ability to do business across state lines, Standard Oil pioneered the use of a central trust that owned and controlled the constituent companies in each state. [Harvnb|Cowan|1997|pp=158] The use of trusts by other industries to stifle competition and extract monopoly prices lead to the 1890 passage of the Sherman Antitrust Act. In the 1911 case of "Standard Oil Co. of New Jersey v. United States", the Supreme Court ordered the Standard Oil Trust be disbanded into competing companies that would become Exxon (Standard Oil of New Jersey), Mobil (Standard Oil of New York), and Chevron (Standard Oil of California).

The demand for petroleum products increased rapidly after the turn of the century as families relied upon kerosene to heat and light their houses, industries relied upon lubricants for machinery, and the ever-more prevalent internal combustion engine demanded gasoline fuel. Between 1880 and 1920, the amount of oil refined annually jumped from 26 million barrels to 442 million. [Harvnb|Cowan|1997|pp=158] The discovery of large oil fields in Texas, Oklahoma, Louisiana, and California in the early 20th century touched off "oil crazes" and contributed to these states' rapid industrialization. Because these previously agrarian western states lied outside of the various Standard Oil's production and refining networks, cities like Long Beach, California, Dallas, Texas, and Houston, Texas emerged as major centers for refining and managing these new fields under companies like Sunoco, Texaco, and Gulf Oil.

Electricity

Benjamin Franklin pioneered the study of electricity by being the first to describe positive and negative charges, [cite web|url=http://scienceworld.wolfram.com/biography/FranklinBenjamin.html |title=Benjamin Franklin (1706-1790) |author=Eric Weisstein's World of Scientific Biography |accessdate=2007-03-09] as well as advancing the principle of conservation of charge. [cite web |url=http://www.aip.org/history/gap/Franklin/Franklin.html |title=Benjamin Franklin 1706-1790 |author=American Institute of Physics |accessdate=2007-03-09] Franklin is best known for the apocryphal feat of flying a kite in thunderstorm to prove that lightning is a form of electricity which, in turn, lead to the invention of the lightning rod to protect buildings. Early physicists, like Humphry Davy, demonstrated that electricity could generate light under certain conditions, but the batteries of the time could not sustain the necessary currents for long periods of time. In 1831, the Englishman Michael Faraday demonstrated the relationship between electricity and magnetism and devised an electrical generator that used a spinning magnet to create a current. Generators were soon used to power arc lamps in Britain and France, but they generated high temperatures and sparks that prevented widespread adoption.

In 1880, Thomas Alva Edison developed and patented a long-lasting incandescent lamp based upon the previous work of many inventors. Like Bell, Edison immediately set about commercializing his invention through a shrewd business plan involving companies that would manufacture the whole technological system upon which the "light bulb" would depend - generators (Edison Machine Company), cables (Edison Electric Tube Company), generating plants and electric service (Edison Electric Light Company), sockets, and bulbs. [Harvnb|Cowan|1997|pp=163] As in other industries of the era, these companies achieved greater efficiencies by merging to form a conglomerated General Electric company. Lighting was immensely popular: between 1882 and 1920 the number of generating plants in the US increased from one in downtown Manhattan to nearly 4,000. [Harvnb|Cowan|1997|pp=163] While the earliest generating plants were constructed in the immediate vicinity of consumers, plants generating electricity for long-distance transmissions were in place by 1900. By 1920, electricity had surpassed petroleum-based lighting sources that had dominated the previous century.

In addition to lighting, electric motors (analogous to generators operating in reverse, or using a current to spin a magnet to perform work) became extremely important to industry. In 1883, a Serbian immigrant, Nikola Tesla, a protégé of Edison's, invented an electric motor which greatly simplified electric motors and licensed the invention to the Westinghouse Corporation. Electric motors quickly replaced steam engines in factories around the nation as they required neither complex mechanical transmissions from a central engine nor water sources for steam boilers in order to operate. [Harvnb|Cowan|1997|pp=164] Frank Sprague, an electrical engineer who also previously worked for Edison, pioneered the use motors to power electric street carriages in 1888.

Edison's patents on direct current generation and illumination allowed him to dominate the initial years of electric power distribution. However, DC transmission was hampered by the difficulty in changing voltages between industrial generation and residential/commercial consumption as well as low transmission efficiency. In 1887, Tesla introduced system for alternating current generators, transformers, motors, wires and lights that allowed for convenient voltage transformation and greater transmission efficiencies and licensed the inventions to George Westinghouse to commercialize. Despite the apparent technical superiority of Tesla's system, Edison's GE began a campaign to disparage the competing AC system by holding animal executions using AC current (which lead to the invention of the electric chair), publicizing accounts of injuries related to AC power, and lobbying state legislatures. In 1893, the Niagara Falls Commission awarded Tesla-Westinghouse (backed by J.P. Morgan, Lord Rothschild, and John Jacob Astor IV) their hydroelectric dam contract over opposition from GE, thereby establishing AC generation and transmission on a large scale as well as creating the 60 Hz standard.

Automobiles

The technology for creating an automobile emerged in Germany in the 1870 and 1880s: Nicolaus Otto created a four-stroke internal combustion engine, Gottlieb Daimler and Wilhelm Maybach modified the Otto engine to run at higher speeds, and Karl Benz pioneered the electric ignition. The Duryea brothers and Hiram Percy Maxim were among the first to construct a "horseless carriage" in the US in the mid-1890s, but these early cars proved to be heavy and expensive.

Henry Ford revolutionized the automobile manufacturing process by employing interchangeable parts on assembly lines — the beginning of industrial mass production. In 1908, the Ford Motor Company released the Model T which could generate 20 horsepower, was lightweight, and easy to repair. Demand for the car was so great, he had to relocate his assembly plant to Highland Park, Michigan in 1912. The new plant was a model of industrial efficiency for the time: it was well-lit and ventilated, employed conveyors to move parts along an assembly line, and workers' stations were orderly arranged along the line. The efficiency of the assembly line allowed Ford to realize great gains in economy and productivity; in 1912, Ford sold 6,000 cars for approximately $900 and by 1916 approximately 577,000 Model T automobiles were sold for $360. [Harvnb|Cowan|1997|pp=229] Ford was able to scale production rapidly because assembly-line workers were unskilled laborers performing repetitive tasks. Ford hired European immigrants, African-Americans, ex-convicts, and the disabled and paid comparatively high wages, but was quick to dismiss anyone involved in labor unions or radical political associations. [Harvnb|Cowan|1997|pp=230]

Despite the growth of American automobile usage, urban and rural roads were poorly equipped for the new traffic. Local automobile clubs formed the American Automobile Association to lobby city, state, and federal governments to widen and pave existing roads and build limited-access highways. While some federal road aid was passed in the 1910s and 20s (resulting in highways like U.S. Route 1 and U.S. Route 66), the coverage and quality of many roads would vary greatly until the Depression-era Works Progress Administration began to invest heavily in road infrastructure. [Harvnb|Cowan|1997|pp=236] Automobile ownership declined during the Depression as well as World War II when wartime rationing and military production lines limited the number of automobiles that could be manufactured — only the largest companies like Ford, GM, and Chrysler survived the lean years. After the war, rising family sizes, increasing affluence, and government-subsidized mortgages for veterans fueled a boom in single-family homes in the outskirts of urban areas. [Harvnb|Cowan|1997|pp=237] These suburbs were made for automobile-owners: the developments laid beyond existing public transportation systems and they were too widely dispersed to facilitate walking between destinations. Automobile use contributed to enormous amounts of congestion in urban, suburban, and rural areas as newer state-funded toll-roads and older Depression-era roads alike were ill-equipped to handle the intercity and interstate traffic. In 1956, Congress passed the Interstate and National Defense Highway Act which provided funding for the construction of convert|41000|mi|km|-2 of toll-free expressways throughout the country laying the legislative and infrastructural foundations for the modern American highway system.

Effects of industrialization

Agricultural production

In the 1840s, as more and more western states joined the Union, many poor and middle-class Americans increasingly agitated for free land in these large, undeveloped areas. Early efforts to pass a Homestead Act by George Henry Evans and Horace Greeley were stymied by Southern states who feared that free land would threaten the plantation system. The Homestead Act was passed in 1862 after the opposing Southern states had seceded. The Homestead Act granted 160 acres (65 hectares) to farmers who lived on the land for 5 years or allowed the farmer to purchase the land after 6 months for $1.25 per acre ($3/ha).

Even as America’s westward expansion allowed over 400 million acres (1,600,000 km²) of new land to be put under cultivation, between 1870 and 1910 the number of Americans involved in farming or farm labor dropped by a third. [Harvnb|Cowan|1997|pp=166] New farming techniques and agricultural mechanization facilitated both processes. Cyrus McCormick’s reaper (invented in 1834) allowed farmers to quadruple their harvesting efficiency by replacing hand labor with a mechanical device. John Deere invented the steel plow in 1837, keeping the soil from sticking to the plow and making it easier to farm in the rich prairies of the Midwest. The harvester, self-binder, and combine allowed even greater efficiencies: wheat farmers in 1866 achieved an average yield of 9.9 bushels per acre but by 1898 yields had increased to 15.3 bushels per acre even as the total area had tripled. [Harvnb|Cowan|1997|pp=170]

Railroads allowed harvests to reach markets more quickly and refrigerated transport allowed fresh meat and fish to reach distant markets. Food distribution also became more mechanized as companies like Heinz and Campbell distributed previously perishable foods by canning and evaporation. Commercial bakeries, breweries, and meatpackers replaced locally-owned operators and drove demand for raw agricultural goods. Despite increasing demand, rising production caused a drop in prices, creating substantial discontent among farmers. Organizations like The Grange and Farmers Alliance emerged to demand conservative monetary policy, railroad regulations, and protective tariffs.

Urbanization

The period between 1865 and 1920 was marked by the increasing concentration of people, political power, and economic activity in urban areas. In 1860, there were nine cities with populations over 100,000 and by 1910 there were fifty. [Harvnb|Cowan|1997|pp=166] These new large cities were not coastal port cities (like New York, Boston, and Philadelphia) but laid inland along new transportation routes (like Denver, Chicago, and Cleveland). The first twelve presidents of the United States had all been born into farming communities, but between 1865 and 1912 the Presidency was filled by men with backgrounds of representing businesses and cities.

Industrialization and urbanization reinforced each other and urban areas became increasingly congested. As a result of unsanitary living conditions, diseases like cholera, dysentery, and typhoid fever struck urban areas with increasing frequency. Cities responded by paving streets, digging sewers, sanitizing water, constructing housing, and creating public transportation systems.

Labor issues and immigration

As the nation deepened its technological base, old-fashioned artisan and craftsman became “deskilled” and replaced by specialized workers and engineers who used machines to replicate in minutes or hours work that would require a journeyman hours or days to complete. Frederick W. Taylor, recognizing the inefficiencies introduced by some production lines, proposed that by studying the motions and processes necessary to manufacture each component of a product, reorganizing the factory and manufacturing processes around workers, and paying workers piece rates would allow great gains in process efficiency. Scientific management, or “Taylorism” as it came to be known, was soon being applied by progressive city governments to make their urban areas more efficient and by suffragettes to home economics. [Harvnb|Cowan|1997|pp=212]

Increasing industrialization outpaced the supply of laborers able or willing to work in dangerous, low-paying, and dead-end jobs. However, the demand for low or unskilled jobs drove wages up and attracted waves of Irish, Italian, Polish, Russian, and Jewish immigrants who could earn more in America than in their homelands.

The earliest unions emerged before the Civil War as trade guilds composed of journeyman carpenters, masons, and other artisans who would engage in strikes to demand better hours and pay from their masters. All branches of government generally sought to stop labor from organizing into unions or from organizing strikes.

Banking and trading

To finance the larger-scale enterprises required during this era, the Stockholder Corporation emerged as the dominant form of business organization. Corporations expanded by combining into trusts, and by creating single firms out of competing firms, known as monopolies.Banking, investment, insurance, consulting, corporations, speculation, business cycle

Regulation

Business leaders backed government policies of laissez-faire. High tariffs sheltered U.S. factories and workers from foreign competition, federal railroad subsidies enriched investors, farmers and railroad workers, and created hundreds of towns and cities.

Powerful industrialists, such as Andrew Carnegie, John D. Rockefeller and Jay Gould, known collectively as "robber barons", held great wealth and power.

Great Depression

Military-industrial-academic complex

In the 20th century, the pace of technological developments increasingly became tied into a complex set of interactions between Congress, the industrial manufacturers, university research, and the military establishment. This set of relations, known more popularly as the "military-industrial complex," emerged because the military's unique technological demands, concentration of funding, large scale application, and highly centralized control played a dominant role in driving technological innovation. Fundamental advances in medicine, physics, chemistry, computing, aviation, material science, naval architecture, and meteorology, among other fields, can be traced back to basic and applied research for military applications.

Research universities

The first universities in the United States were modeled on the liberal curricula of the great English universities and were meant to educate clergymen and lawyers rather than teach vocational skills or conduct scientific research. The U.S. Military Academy, established in 1811, broke the mold of traditional universities and military academies alike by including practical engineering-related subjects in its earliest curricula. By the middle of the 19th century, polytechnic institutes were being founded in increasing numbers to train students in the scientific and technical skills needed to design, build, and operate increasingly complex machines. In 1824, Stephen van Rensselaer established the first American institute granting a bachelor's degree in technical subjects and in the 1850s several Ivy League schools began to offer courses of study in scientific fields.

Congressional legislators, recognizing the increasing importance and prevalence of these eastern polytechnic schools, passed the 1862 Morrill Land-Grant Colleges Act providing large grants of land [30,000 acres (120 km²) of federal land, either within or contiguous to its boundaries, for each member of Congress the state had as of the census of 1860 - a minimum of 90,000 acres (360 km²). cite web|url=http://usinfo.state.gov/usa/infousa/facts/democrac/27.htm |title=Backgrounder on the Morrill Act |publisher=International Information Programs, U.S. Department of State |accessdate=2007-03-17] that were to be used toward establishing and funding the educational institutions that would teach courses on military tactics, engineering, and agriculture. Many of the United States' noted public research universities can trace their origins back to land grant colleges. Between 1900 and 1939, enrollments in post-secondary institutes increased from 238,000 to 1,494,000 [cite web|url=http://www.census.gov/statab/hist/HS-21.pdf |title=No. HS-21. Education Summary—High School Graduates, and CollegeEnrollment and Degrees: 1900 to 2001 |accessdate=2007-03-18] and higher education had become so available and affordable that a college degree was increasingly required for scientific, engineering, and government jobs that previously only required only vocational or secondary education. [Harvnb|Cowan|1997|pp=140-141]

After World War II, the GI Bill caused university enrollments to explode as millions of veterans earned college degrees.

World wars

Great White fleet, Spanish-American War, tanks, machine gun, medicine, chemical weapons,
*Richard Jordan Gatling - Gatling gun
*John T. Thompson - Tommy gun

The introduction of the airplane to the battlefield was one of the most radical changes in the history of warfare.Fact|date=March 2007 The history of flight traces hundreds of years and the distinction of building first flying machine is complicated, but in December 1903 the Wright Brothers achieved sustained, manned, and controlled heavier-than-air flight. The Wright brothers had difficulty raising funding from the government and military, but after World War I began in 1914, airplanes quickly assumed great tactical importance for both sides ("see" Aviation in World War I); the US government appropriated $640 million in 1917 to procure 20,000 airplanes for the war for aerial reconnaissance, dogfighting, and aerial bombing. [Harvnb|Cowan|1997|pp=252] After the close of the war in 1918, the US government continued to fund peacetime aeronautical activities like airmail and the National Advisory Committee for Aeronautics. Throughout the 1920s and 1930s, industrial, university, and military research continued to realize gains in the power, maneuverability, and reliability of airplanes: Charles Lindbergh completed a non-stop transatlantic flight in 1927, Wiley Post flew around the world in nine days in 1931, and Howard Hughes shattered flight airspeed records throughout the decade. In the 1930s, passenger airlines boomed as a result of the Kelley Act, state and local governments began constructing airports to attract airlines, and the federal government began to regulate air traffic control and investigate aviation accidents and incidents.

Cold War and Space Race

Manhattan project, procurement, government R&D, technology gap

American Robert Goddard was one of the first scientists to experiment with rocket propulsion systems. In his small laboratory in Worcester, Massachusetts, Goddard worked with liquid oxygen and gasoline to propel rockets into the atmosphere, and in 1926 successfully fired the world's first liquid-fuel rocket which reached a height of 12.5 meters. Over the next 10 years, Goddard's rockets achieved modest altitudes of nearly two kilometers, and interest in rocketry increased in the United States, Britain, Germany, and the Soviet Union.

At the close of World War II, both the American and Russian forces recruited or smuggled top German scientists like Wernher von Braun back to their respective countries to continue defense-related work.Expendable rockets provided the means for launching artificial satellites, as well as manned spacecraft. In 1957 the Soviet Union launched the first satellite, Sputnik I, and the United States followed with Explorer I in 1958. The first manned space flights were made in early 1961, first by Soviet cosmonaut Yuri Gagarin and then by American astronaut Alan Shepard.

From those first tentative steps, to the 1969 Apollo program landing on the Moon, to today's reusable Space Shuttle, the American space program has brought forth a breathtaking display of applied science. Communications satellites transmit computer data, telephone calls, and radio and television broadcasts. Weather satellites furnish the data necessary to provide early warnings of severe storms.

Computers and networks

For the past 80 years, the United States has been integral in fundamental advances in telecommunications and technology. For example, AT&T's Bell Laboratories spearheaded the American technological revolution with a series of inventions including the light emitting diode (LED), the transistor, the C programming language, and the UNIX. SRI International and Xerox PARC in Silicon Valley helped give birth to the personal computer industry, while ARPA and NASA funded the development of the ARPANET and the Internet.

ervice industry

Health care and biotechnology

As in physics and chemistry, Americans have dominated the Nobel Prize for physiology or medicine since World War II. The private sector has been the focal point for biomedical research in the United States, and has played a key role in this achievement. As of 2000, for-profit industry funded 57%, non-profit private organizations funded 7%, and the tax-funded National Institutes of Health funded 36% of medical research in the U.S. [cite web|url=http://hsc.utoledo.edu/research/nih_research_benefits.pdf |title=The Benefits of Medical Research and the Role of the NIH |accessdate=2007-03-19] Funding by private industry increased 102% from 1994 to 2003. [cite web|url=http://www.medpagetoday.com/PublicHealthPolicy/HealthPolicy/tb/1767 |title=Medical Research Spending Doubled Over Past Decade |author=Neil Osterweil |publisher=MedPage Today |date=September 20, 2005 |accessdate=2007-03-19]

The National Institutes of Health consists of 24 separate institutes supporting the prevention, detection, diagnosis, and treatment of diseases and disabilities. At any given time, grants from the NIH support the research of about 35,000 principal investigators, working in every US state and several foreign countries. Between 1971 and 1991, mortality from heart disease dropped 41 percent, strokes decreased by 59 percent. And today more than 70 percent of children who get cancer are cured.

Molecular genetics and genomics research have revolutionized biomedical science. In the 1980s and 1990s, researchers performed the first trial of gene therapy in humans and are now able to locate, identify, and describe the function of many genes in the human genome. Research conducted by universities, hospitals, and corporations also contributes to improvement in diagnosis and treatment of disease. NIH funded the basic research on Acquired Immune Deficiency Syndrome (AIDS), for example, but many of the drugs used to treat the disease have emerged from the laboratories of the American pharmaceutical industry; those drugs are being tested in research centers across the country.

Media and entertainment

Radio, television, newspapers, movies, Billboard, cultural production

Technology and society

This section discusses contestable technology, Science and technology studies, engineering failures and ethics, product safety, counterculture, environmental impacts, luddism and reactionary, policy, pollution and environmentalism.

ee also

People

Important inventors whose accomplishments do not fit into other categories:
*Elisha Otis — Invented the passenger elevator, which would eventually allow for the development of skyscrapers
*Willis Haviland Carrier - Air conditioning
*Charles Goodyear - vulcanized rubber
*Elias Howe - sewing machine
*King C. Gillette - Disposable razor blade

References

Further reading

*Harvard reference |last=Cowan |first=Ruth Schwartz |title=A Social History of American Technology |publisher=Oxford University Press |place=New York |year=1997 |isbn=0195046056
*Harvard reference |last1=Cross |first1=Gary |last2=Szostak |first2=Rich |title=Technology and American Society |publisher=Prentice Hall |place=New York |year=2004 |isbn=0131896431
*Harvard reference |last1=Cutcliffe |first1=Stephen H. |last2=Reynolds |first2=Terry S. |title=Technology & American History |publisher=University of Chicago Press |place=Chicago |year=1997 |isbn=0226710270
*Harvard reference |last1=Hindle |first1=Brooke |last2=Lubar |first2=Steven |title=Engines of Change: the American Industrial Revolution, 1790-1860 |publisher=Smithsonian Institution Press |place=Washington |year=1986 |isbn=087474539X
*Harvard reference |last=Hughes |first=Thomas Parke |title=American Genesis: A History of the American Genius for Invention |publisher=Penguin Books |place=New York |year=1989 |isbn=0140097414
*Harvard reference |last1=Marcus |first1=Alan I. |last2=Segal |first2=Howard P. |title=Technology in America |publisher=Wadsworth Publishing |place=New York |year=1998 |isbn=0155055313
*Harvard reference |last=McGaw |first=Judith A. |title=Early American Technology: Making and Doing Things from the Colonial Era to 1850 |publisher=University of North Carolina Press |place=Charlottesville |year=1994 |isbn=0807844845
*Harvard reference |last1=Mowery |first1=David C. |last2=Rosenberg |first2=Nathan |title=Paths of Innovation: Technological Change in 20th Century America |publisher=Cambridge University Press |place=Cambridge, Eng., New York |year=1998 |isbn=0521646537
*Harvard reference |last=Pursell |first=Carroll |title=The Machine in America: A Social History of Technology |publisher=Johns Hopkins University Press |place=Baltimore |year=1995 |isbn=0801848180
*Harvard reference |last1=Smith |first1=Merrit Roe |last2=Clancey |first2=Gregory |title=Major Problems in the History of American Technology |publisher=Houghton Mifflin |place=Boston |year=1996 |isbn=0669354724

External links

* [http://www.historyoftechnology.org Society for the History of Technology]
* [http://memory.loc.gov/ammem/browse/ListSome.php?category=Technology,+Industry American Memory from the Library of Congress - Technology & Industry]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • History of the United States (1964–1980) — History of the United States This article is part of a series Timeline …   Wikipedia

  • History of Soviet and Russian espionage in the United States — Since the late 1920s, the Soviet Union, through its OGPU and NKVD intelligence services, used Russians and foreign born nationals as well as Communist and left leaning Americans to perform espionage activities in the United States.Haynes, John… …   Wikipedia

  • History of the United States (1865–1918) — The history of the United States (1865–1918) covers Reconstruction and the rise of industrialization in the United States.At the conclusion of the Civil War, the United States remained bitterly divided. Reconstruction and its failure left the… …   Wikipedia

  • History of the United States — The United States is located in the middle of the North American continent, with Canada to the north and Mexico to the south. The United States ranges from the Atlantic Ocean on the nation s east coast to the Pacific Ocean bordering the west, and …   Wikipedia

  • History of turnpikes and canals in the United States — The history of turnpikes and canals in the United States predates the War of American Independence. The thirteen United States likewise controlled a greater area (from New Hampshire to Georgia) than any European nation since the fall of the Roman …   Wikipedia

  • Industrial history of the People's Republic of China — Main articles: Economy and economic history of the People s Republic of China. China s industrial sector has shown great progress since 1949, but in the late 1980s it remained undeveloped in many respects. Although the country manufactured… …   Wikipedia

  • Music history of the United States — United States music history History of the United States …   Wikipedia

  • Military history of the United States — History of the United States This article is part of a series Timeline …   Wikipedia

  • Historical outline of the United States — The following is an outline of the history of the United States of America with hyperlinks to relevant Wikipedia articles.Outline1490s*On 1493 11 14, a Spanish fleet under the command of Cristoforo Colombo (Christopher Columbus) lands on a large… …   Wikipedia

  • Cultural history of the United States — History of the United States This article is part of a series Timeline …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”