Chapman-Kolmogorov equation


Chapman-Kolmogorov equation

In mathematics, specifically in probability theory, and yet more specifically in the theory of Markovian stochastic processes, the Chapman-Kolmogorov equation can be viewed as an identity relating the joint probability distributions of different sets of coordinates on a stochastic process.

These equations are pivotal in the study of this field, and they were worked out independently by the British mathematician Sydney Chapman and the Russian mathematician Andrey Kolmogorov. To give some idea of their importance, they are just as important, or more so, than the Cauchy-Riemann equations in the subject of complex variables.

Suppose that { "f""i" } is an indexed collection of random variables, that is, a stochastic process. Let

:p_{i_1,ldots,i_n}(f_1,ldots,f_n)

be the joint probability density function of the values of the random variables "f1" to "fn". Then, the Chapman-Kolmogorov equation is

:p_{i_1,ldots,i_{n-1(f_1,ldots,f_{n-1})=int_{-infty}^{infty}p_{i_1,ldots,i_n}(f_1,ldots,f_n),df_n

i.e. a straightforward marginalization over the nuisance variable.

(Note that we have not yet assumed anything about the temporal (or any other) ordering of the random variables -- the above equation applies equally to the marginalization of any of them).

Particularization to Markov chains

When the stochastic process under consideration is Markovian, the Chapman-Kolmogorov equation is equivalent to an identity on transition densities. In the Markov chain setting, one assumes that i_1. Then, because of the Markov property, :p_{i_1,ldots,i_n}(f_1,ldots,f_n)=p_{i_1}(f_1)p_{i_2;i_1}(f_2mid f_1)cdots p_{i_n;i_{n-1(f_nmid f_{n-1}), where the conditional probability p_{i;j}(f_imid f_j) is the transition probability between the times i>j. So, the Chapman-Kolmogorov equation takes the form:p_{i_3;i_1}(f_3mid f_1)=int_{-infty}^infty p_{i_3;i_2}(f_3mid f_2)p_{i_2;i_1}(f_2mid f_1)df_2.

When the probability distribution on the state space of a Markov chain is discrete and the Markov chain is homogeneous,the Chapman-Kolmogorov equations can be expressed in terms of (possibly infinite-dimensional) matrix multiplication, thus:

:P(t+s)=P(t)P(s),

where "P"("t") is the transition matrix, i.e., if "X""t" is the state of the process at time "t", then for any two points "i" and "j" in the state space, we have

:P_{ij}(t)=P(X_t=jmid X_0=i).

ee also

* Fokker-Planck equation (also known as Kolmogorov forward equation)
* Kolmogorov backward equation
* Examples of Markov chains
* Master equation (physics)

References

* [http://www.kolmogorov.com/ The Legacy of Andrei Nikolaevich Kolmogorov] Curriculum Vitae and Biography. Kolmogorov School. Ph.D. students and descendants of A.N. Kolmogorov. A.N. Kolmogorov works, books, papers, articles. Photographs and Portraits of A.N. Kolmogorov.
*


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Chapman–Kolmogorov equation — In mathematics, specifically in probability theory and in particular the theory of Markovian stochastic processes, the Chapman–Kolmogorov equation is an identity relating the joint probability distributions of different sets of coordinates on a… …   Wikipedia

  • Équation de Chapman-Kolmogorov — En théorie des probabilités, et plus spécifiquement dans la théorie des processus stochastiques markoviens, l équation de Chapman Kolmogorov est une égalité qui met en relation les lois jointes de différents points de la trajectoire d un… …   Wikipédia en Français

  • Kolmogorov's theorem — is any of several different results by Andrey Kolmogorov:;In statistics * Kolmogorov Smirnov test;In probability theory * Hahn Kolmogorov theorem * Kolmogorov existence theorem * Kolmogorov continuity theorem * Kolmogorov s three series theorem * …   Wikipedia

  • Chapman — is an English occupational surname. A chapman was an itinerant seller in medieval Britain. It is the cognate of the German Kaufmann. Contents 1 People 2 Geographical names 2.1 United States …   Wikipedia

  • Equation de Fokker-Planck — Équation de Fokker Planck L équation de Fokker Planck est une équation aux dérivées partielles linéaire que doit satisfaire la densité de probabilité de transition d un processus de Markov. A l origine, une forme simplifiée de cette équation a… …   Wikipédia en Français

  • Équation de fokker-planck — L équation de Fokker Planck est une équation aux dérivées partielles linéaire que doit satisfaire la densité de probabilité de transition d un processus de Markov. A l origine, une forme simplifiée de cette équation a permis d étudier le… …   Wikipédia en Français

  • Kolmogorov — Andreï Kolmogorov Andreï Kolmogorov Andreï Nikolaïevitch Kolmogorov (en russe : Андрей Николаевич Колмогоров ; 25 avril 1903 à Tambov 20 octobre 1987 à …   Wikipédia en Français

  • Équation de Fokker-Planck — L équation de Fokker Planck est une équation aux dérivées partielles linéaire que doit satisfaire la densité de probabilité de transition d un processus de Markov. A l origine, une forme simplifiée de cette équation a permis d étudier le… …   Wikipédia en Français

  • Andrey Kolmogorov — Infobox Scientist name = Andrey Kolmogorov birth date = birth date|1903|4|25 birth place = Tambov, Imperial Russia nationality = Russian death date = death date and age|1987|10|20|1903|4|25 death place = Moscow, USSR field = Mathematician work… …   Wikipedia

  • Sydney Chapman (mathematician) — Sydney Chapman FRS (29 January 1888 ndash; 16 June 1970Obituary, The Times [http://www history.mcs.st andrews.ac.uk/Obits/Chapman.html] ] T. G. Cowling, Sydney Chapman. 1888 1970, Biographical Memoirs of Fellows of the Royal Society, Vol. 17,… …   Wikipedia