Hecke operator

Hecke operator

In mathematics, in particular in the theory of modular forms, a Hecke operator, studied by Hecke (1937), is a certain kind of "averaging" operator that plays a significant role in the structure of vector spaces of modular forms and more general automorphic representations.

Contents

History

Mordell (1917) used Hecke operators on modular forms in a paper on the special cusp form of Ramanujan, ahead of the general theory given by Hecke (1937). Mordell proved that the Ramanujan tau function, expressing the coefficients of the Ramanujan form,

 \Delta(q)=q\left(\prod_{n=1}^{\infty}(1-q^n)\right)^{24}=
\sum_{n=1}^{\infty} \tau(n)q^n, \quad q=e^{2\pi i\tau},

is a multiplicative function:

 \tau(mn)=\tau(m)\tau(n) \quad \text{ for } (m,n)=1.

The idea goes back to earlier work of Hurwitz, who treated algebraic correspondences between modular curves which realise some individual Hecke operators.

Mathematical description

Hecke operators can be realised in a number of contexts. The simplest meaning is combinatorial, namely as taking for a given integer n some function f(Λ) defined on the lattices of fixed rank to

\sum f(\Lambda')

with the sum taken over all the Λ′ that are subgroups of Λ of index n. For example, with n=2 and two dimensions, there are three such Λ′. Modular forms are particular kinds of functions of a lattice, subject to conditions making them analytic functions and homogeneous with respect to homotheties, as well as moderate growth at infinity; these conditions are preserved by the summation, and so Hecke operators preserve the space of modular forms of a given weight.

Another way to express Hecke operators is by means of double cosets in the modular group. In the contemporary adelic approach, this translates to double cosets with respect to some compact subgroups.

Explicit formula

Let Mm be the set of 2×2 integral matrices with determinant m and Γ = M1 be the full modular group SL(2, Z). Given a modular form f(z) of weight k, the mth Hecke operator acts by the formula

 T_m f(z) = m^{k-1}\sum_{\begin{pmatrix}a & b\\ c & d\end{pmatrix}\in\Gamma\backslash M_m}(cz+d)^{-k}f\left(\frac{az+b}{cz+d}\right),

where z is in the upper half-plane and the normalization constant mk−1 assures that the image of a form with integer Fourier coefficients has integer Fourier coefficients. This can be rewritten in the form

 T_m f(z) = m^{k-1}\sum_{a,d>0, ad=m}\frac{1}{d^k}\sum_{b \pmod d} f\left(\frac{az+b}{d}\right),

which leads to the formula for the Fourier coefficients of Tmf(z) = ∑ bnqn in terms of the Fourier coefficients of f(z) = ∑ anqn:

 b_n = \sum_{r>0, r|(m,n)}r^{k-1}a_{mn/r^2}.

One can see from this explicit formula that Hecke operators with different indices commute and that if a0 = 0 then b0 = 0, so the subspace Sk of cusp forms of weight k is preserved by the Hecke operators. If a (non-zero) cusp form f is a simultaneous eigenform of all Hecke operators Tm with eigenvalues λm then am = λma1 and a1 ≠ 0. Hecke eigenforms are normalized so that a1 = 1, then

 T_m f = a_m f, \quad a_m a_n = \sum_{r>0, r|(m,n)}r^{k-1}a_{mn/r^2},\ m,n\geq 1.

Thus for normalized cuspidal Hecke eigenforms of integer weight, their Fourier coefficients coincide with their Hecke eigenvalues.

Hecke algebras

Algebras of Hecke operators are called Hecke algebras, and are commutative rings. Other, related, mathematical rings are called Hecke algebras, although the link to Hecke operators is not entirely obvious. These algebras include certain quotients of the group algebras of braid groups. The presence of this commutative operator algebra plays a significant role in the harmonic analysis of modular forms and generalisations. In the classical elliptic modular form theory, the Hecke operators Tn with n coprime to the level acting on the space of cusp forms of a given weight are self-adjoint with respect to the Petersson inner product. Therefore, the spectral theorem implies that there is a basis of modular forms that are eigenfunctions for these Hecke operators. Each of these basic forms possesses an Euler product. More precisely, its Mellin transform is Dirichlet series that has Euler products with the local factor for each prime p is the inverse of the Hecke polynomial, a quadratic polynomial in ps. In the case treated by Mordell, the space of cusp forms of weight 12 with respect to the full modular group is one-dimensional. It follows that the Ramanujan form has an Euler product and establishes the multiplicativity of τ(n).

See also

  • Eichler–Shimura congruence relation

References

  • Apostol, Tom M. (1990), Modular functions and Dirichlet series in number theory (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-97127-8  (See chapter 8.)

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Hecke-Operator — In der Mathematik versteht man unter Hecke Operatoren bestimmte lineare Operatoren auf dem Vektorraum der ganzen Modulformen. Eingeführt wurden diese Operatoren von Erich Hecke. Ihre Bedeutung erhalten sie dadurch, dass bestimmte Modulformen… …   Deutsch Wikipedia

  • Erich Hecke — Infobox Scientist box width = name = Erich Hecke image size = caption = birth date = birth date|1887|9|20 birth place = Buk, Posen, Germany death date = death date and age|1947|2|13|1887|9|20 death place = Copenhagen, Denmark residence =… …   Wikipedia

  • Selberg trace formula — In mathematics, the Selberg trace formula is a central result, or area of research, in non commutative harmonic analysis. It provides an expression for the trace, in a sense suitably generalising that of the trace of a matrix, for suitable… …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Heck — is a euphemism for Hell. Heck or Hecke may also refer to:*Parnall Heck was a 1930s British four seat cabin monoplane *The Heck reaction, named after Richard F. Heck * Where the Hell is Heck? was a collection of BC comic strips.Mathematics*Hecke… …   Wikipedia

  • Eisenstein ideal — In mathematics, the Eisenstein ideal is a certain ideal in the endomorphism ring of the Jacobian variety of a modular curve. It was introduced by Barry Mazur in 1977, in studying the rational points of modular curves. The endomorphism ring in… …   Wikipedia

  • Atkin-Lehner theory — In mathematics, the Atkin Lehner theory is an algebraic part of the theory of modular forms, in which the concept of newform is defined. A newform is a cusp form new at a given level N , where the levels refer to the nested subgroups: Gamma;( N… …   Wikipedia

  • Monstrous moonshine — En mathématiques, monstrous moonshine est un terme anglais conçu par John Horton Conway et Simon P. Norton (en) en 1979, utilisé pour décrire la connexion (alors totalement inattendue) entre le groupe Monstre M et les fonctions modulaires… …   Wikipédia en Français

  • Forme modulaire — En mathématiques, une forme modulaire est une fonction analytique sur le demi plan de Poincaré satisfaisant à une certaine sorte d équation fonctionnelle et de condition de croissance. La théorie des formes modulaires par conséquent est dans la… …   Wikipédia en Français

  • Louis Mordell — Louis Joel Mordell est un mathématicien américano britannique, né le 28 janvier 1888 à Philadelphie et mort le 12 mars 1972 à Cambridge. Pionnier par ses recherches en théorie des nombres, il est un spécialiste reconnu des équations… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”