Mobile VoIP

Mobile VoIP

Mobile VoIP or simply mVoIP is an extension of mobility to a Voice over IP network. Two types of communication are generally supported: cordless/DECT/PCS protocols for short range or campus communications where all base stations are linked into the same LAN, and wider area communications using 3G/4G protocols.

There are several methodologies by which a mobile handset can be integrated into a VoIP network. One implementation turns the mobile device into a standard SIP client, which then uses a data network to send and receive SIP messaging, and to send and receive RTP for the voice path. This methodology of turning a mobile handset into a standard SIP client requires that the mobile handset support, at minimum, high speed IP communications. In this application, standard VoIP protocols (typically SIP) are used over any broadband IP-capable wireless network connection such as EVDO rev A (which is symmetrical high speed — both high speed up and down), HSDPA, WiFi or WiMAX.

Another implementation of mobile integration uses a softswitch like gateway to bridge SIP and RTP into the mobile network's SS7 infrastructure. In this implementation, the mobile handset continues to operate as it always has (as a GSM or CDMA based device), but now it can be controlled by a SIP application server which can now provide advanced SIP based services to it. Several vendors offer this kind of capability today.

Mobile VoIP will require a compromise between economy and mobility. For example, Voice over Wi-Fi offers potentially free service but is only available within the coverage area of a single Wi-Fi Access Point. Cordless protocols offer excellent voice support and even support base station handoff, but require all base stations to communicate on one LAN as the handoff protocol is generally not supported by carriers or most devices.

High speed services from mobile operators using EVDO rev A or HSDPA may have better audio quality and capabilities for metropolitan-wide coverage including fast handoffs among mobile base stations, yet it will cost more than the typical Wi-Fi-based VoIP service.

As device manufacturers exploited more powerful processors and less costly memory, smartphones became capable of sending and receiving email, browsing the web (albeit at low rates) and allowing a user to watch TV. Mobile VoIP userswere predicted to exceed 100 million by 2012 and InStat projects 288 million subscribers by 2013.[1]

The mobile operator industry business model conflicts with the expectations of Internet users that access is free and fast without extra charges for visiting specific sites, however far away they may be hosted. Because of this, most innovations in mobile VoIP will likely come from campus and corporate networks, open source projects like Asterisk, and applications where the benefits are high enough to justify expensive experiments (medical, military, etc.).



Mobile VoIP, like all VoIP, relies onSIP — the standard used by most VoIP services, and now being implemented on mobile handsets and smartphones and an increasing number of cordless phones.

UMA — the Unlicensed Mobile Access Generic Access Network allows VoIP to run over the GSM cellular backbone.

When moving between IP-based networks, as is typically the case for outdoor applications, two other protocols are required:

  • IEEE 802.21 handoff, permitting one network to do call setup and initial traffic, handing off to another when the first is about to fall out of range - the underlying network need not be IP-based, but typically the IP stream is guaranteed a certain Quality of Service (QoS) during the handoff process
  • IEEE 802.11u call initiation when the initial contact with a network is not one that the user has subscribed to or been in contact with before.

For indoor or campus (cordless phone equivalent) use, the IEEE P1905 protocol establishes QoS guarantees for home area networks: WiFi, Bluetooth, 3G, 4G and wired backbones using AC powerline networking/HomePlug/IEEE P1901, Ethernet and Power over Ethernet/IEEE 802.3af/IEEE 802.3at, MoCA and In combination with IEEE 802.21, P1905 permits a call to be initiated on a wired phone and transferred to a wireless one and then resumed on a wired one, perhaps with additional capabilities such as videoconferencing in another room. In this case the use of mobile VoIP enables a continuous conversation that originates, and ends with, a wired terminal device.

An older technology, PCS base station handoff, specifies equivalent capabilities for cordless phones based on 800, 900, 2.4, 5.8 and DECT. While these capabilities were not widely implemented, they did provide the functional specification for handoff for modern IP-based telephony. A phone can in theory offer both PCS cordless and mobile VoIP and permit calls to be handed off from traditional cordless to cell and back to cordless if both the PCS and UMA/SIP/IEEE standards suites are implemented. Some specialized long distance cordless vendors like Senao attempted this but it has not generally caught on. A more popular approach has been full-spectrum handsets that can communicate with any wireless network including mobile VoIP, DECT and satellite phone networks, but which have limited handoff capabilities between networks. The intent of IEEE 802.21 and IEEE 802.11u is that they be added to such phones running iPhone, QNX, Android or other smartphone operating systems, yielding a phone that is capable of communicating with literally any digital network and maintaining a continuous call at high reliability at a low access cost.

Most VoIP vendors implement proprietary technologies that permit such handoff between equipment of their own manufacture, e.g. the Viera system from Panasonic. Typically providing mobility costs more, e.g. the Panasonic VoIP cordless phone system (KX-TGP) costs approximately three times more than its popular DECT PSTN equivalent (KX-TGA). Some companies, including Cisco, offer adapters for analog/DECT phones as alternatives to their expensive cordless.

Industry history


Early experiments proved that VoIP was practical and could be routed by Asterisk even on low end routers like the Linksys WRT54G. [3], suggesting a mesh network (e.g. WDS) composed of such cheap devices could similarly support roaming mobile VoIP phones. These experiments, and others for IP roaming such as Sputnik, were the beginning of the 5G protocol suite including IEEE 802.21 and IEEE 802.11u. At this time, most mobile operators attempted to restrict IP tethering and VoIP use on their networks, often by deliberately introducing high latency into data communications making it useless for voice traffic.


In the summer of 2006, a SIP (Session Initiation Protocol) stack was introduced and a VoIP client in Nokia E-series dual-mode Wi-Fi handsets (Nokia E60, Nokia E61, Nokia E70). The SIP stack and client have since been introduced in many more E and N-series dual-mode Wi-Fi handsets, most notably the Nokia N95 which has been very popular in Europe. Various services use these handsets.


In spring 2008 Nokia introduced a built in VoIP client to the mass market device (Nokia 6300i) running Series 40 operating system. Since then other dualmode WiFi capable Series40 handsets have been equipped with integrated VoIP (Nokia 6260 Slide, Nokia X3-02, Nokia C3-01). Nokia maintains a list of all phones that have an integrated VoIP client in Forum Nokia.[2]

Aircell's battle with some companies allowing VoIP calls on flights is another example of the growing conflict of interest between incumbent operators and new VoIP operators.[3]


By January 2009 OpenWRT [4] was capable of supporting mobile VoIP applications via Asterisk running on a USB stick. As OpenWRT runs on most WiFi routers, this radically expanded the potential reach of mobile VoIP applications. Users reported acceptable results using G.729 codecs and connections to a "main NAT/Firewall router with a NAT=yes and canreinvite=no.. As such, my asterisk will stay in the audio path and can't redirect the RTP media stream (audio) to go directly from the caller to the callee." Minor problems were also reported: "Whenever there is an I/O activities ... i.e. reading the Flash space (mtdblockd process), this will create some hick-ups (or temporarily losing audio signals)." The combination of OpenWRT and Asterisk is intended as an open source replacement for proprietary PBXes.

The company xG Technology, Inc. had a mobile VoIP and data system operating in the license-free ISM 900 MHz band (902 MHz – 928 MHz). xMax is an end-to-end Internet Protocol (IP) system infrastructure that is currently deployed in Fort Lauderdale, Florida.[4]


The mainstreaming of VoIP in the small business market led to the introduction of more devices extending VoIP to business cordless users.

Panasonic introduced the KX-TGP base station supporting up to 6 cordless handsets [5], essentially a VoIP complement to its popular KX-TGA analog phones which likewise support up to 4 cordless handsets. However, unlike the analog system which supports only four handsets in one "conference" on one line, the TGP supports 3 simultaneous network conversations and up to 8 SIP registrations (e.g. up to 8 DID lines or extensions), as well as an Ethernet pass-through port to hook up computers on the same drop. In its publicity Panasonic specifically mentions Digium (founded by the creator of Asterisk), its product Switchvox and Asterisk itself.

Several router manufacturers including TRENDnet and Netgear released sub-$300 Power over Ethernet switches aimed at the VoIP market. Unlike industry standard switches that provided the full 30 watts of power per port, these allowed under 50 watts of power to all four PoE ports combined. This made them entirely suitable for VoIP and other low-power use (Motorola Canopy or security camera or WiFi APs) typical of a SOHO application, or supporting an 8-line PBX, especially in combination with a multi-line handset such as the Panasonic KX-TGP (which does not require a powered port).

Accordingly, by the end of 2011, for under US$3000 it was possible to build an office VoIP system based entirely on cordless technology capable of several hundred meters reach and on power-over-ethernet dedicated wired phones, with up to 8 DID lines and 3 simultaneous conversations per base station, with 24 handsets each capable of communicating on any subset of the 8 lines, plus an unlimited number of softphones running on computers and laptops and smartphones. This compared favourably to proprietary PBX technology especially as VoIP cordless was far cheaper than PBX cordless.

Cisco also released the SPA112, an Analog Telephone Adapter (ATA) to connect one or two standard RJ-11 telephones to an Ethernet, in November 2011, retailing for under US$50. This was a competitive response to major cordless vendors such as Panasonic moving into the business VoIP cordless market Cisco had long dominated, as it suppressed the market for the cordless makers' native VoIP phones and permitted Cisco to argue the business case to spend more on switches and less on terminal devices. However, this solution would not permit the analog phones to access every line of a multi-line PBX, only one hardwired line per phone.

As of late 2011, most cellular data networks were still extremely high latency and effectively useless for VoIP. IP-only providers such as Voipstream had begun to serve urban areas, and alternative approaches such as OpenBTS (open source GSM) were competing with mobile VoIP.

Software clients

MobileDialer, as they are termed, enable cell phones be turned into voip enabled devices to exploit and expose the Vo3G/Vowlan Functionalities of the phone.

MobileDialers are available for various Smartphone/PDA platforms:

  • Bulk MobileDialer for VOIP Companies. Companies like E-Soft Billing(SIP Mobile Dialer),Ascent Telecom (Endura Mobile Dialer),[5] REVE Systems (iTel Mobile Dialer Express),[6] adoresoft, etc. have released Mobile dialers which can be used by other VoIP Providers. REVE Systems, which is a premium VoIP solution provider company, claims that iTel Mobile Dialer Express, which is a Mobile Dialer application for Internet telephony service provider, supports largest range of Symbian Based Nokia handsets. iTel Mobile Dialer Express is also known as "lightest Mobile Dialer" in the industry is available for Symbian,[7] Windows[8] and Blackberry operating System based Mobile Phones.


See also

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Mobile VoIP — (mVoIP)  VoIP используемый на мобильных устройствах, таких, как смартфоны, коммуникаторы, КПК или обычные мобильные телефоны, способные взаимодействовать с IP сетями …   Википедия

  • Mobile dialer — is a software application installed and used on mobile phones. Various software solution providers offer branded mobile dialers. They are used to make VoIP (Voice over Internet Protocol) calls from a mobile hand set. The Mobile Dialer or Mobile… …   Wikipedia

  • VoIP Mobile — (Voice over Internet Protocol Mobile), wVoIP (Wireless VoIP) ou VoWLAN (Voice over WLAN) est une extension de la technologie VoIP. La VoIP Mobile est plus riche que la VoIP au travers de réseaux Wi Fi. N importe quel réseau IP sans fil, comme les …   Wikipédia en Français

  • Voip mobile — (Voice over Internet Protocol Mobile), wVoIP (Wireless VoIP) ou VoWLAN (Voice over WLAN) est une extension de la technologie VoIP. La VoIP Mobile est plus riche que la VoIP au travers de réseaux Wi Fi. N importe quel réseau IP sans fil, comme les …   Wikipédia en Français

  • Mobile Broadband — is the name used to describe various types of wireless high speed internet access through a portable modem, telephone or other device. Various network standards may be used, such as GPRS, 3G, WiMAX, UMTS/HSPA, EV DO and some portable satellite… …   Wikipedia

  • Mobile broadband — For fixed wireless Internet access, see Wireless broadband. A mobile broadband modem in the ExpressCard form factor for laptop computers …   Wikipedia

  • VOIP — (англ. Voice over Internet Protocol; IP телефония)  система связи, обеспечивающая передачу речевого сигнала по сети Интернет или по любым другим цифровом виде и, как правило, перед передачей преобразовывается (сжимается) с тем, чтобы удалить… …   Википедия

  • VoIP mobile — (Voice over Internet Protocol Mobile), wVoIP (Wireless VoIP) ou VoWLAN (Voice over WLAN) est une extension de la technologie VoIP. La VoIP mobile est plus riche que la VoIP au travers de réseaux Wi Fi. N importe quel réseau IP sans fil, comme les …   Wikipédia en Français

  • VoIP User — is a community driven and financed SIP based VoIP network. The projects aim is to introduce people to the concept of VoIP by allowing members to experiment with SIP and IAX2 devices. Features The VoIP User network was designed to operate within a …   Wikipedia

  • VoIP — Voice over Internet Protocol (VoIP) USA A method for transmitting voice communications over data networks such as the internet. VoIP applications enable certain electronic devices to: • Convert a caller s analog voice signal into digital data… …   Law dictionary