Spread spectrum

Spread spectrum
Passband modulation v · d · e
Analog modulation
AM · SSB · QAM · FM · PM · SM
Digital modulation
FSK · MFSK · ASK · OOK · PSK · QAM
MSK · CPM · PPM · TCM · SC-FDE
Spread spectrum
CSS · DSSS · FHSS · THSS
See also: Demodulation, modem,
line coding, PAM, PWM, PCM
Multiplex
techniques
Circuit mode
(constant bandwidth)
TDM · FDM · SDM
Polarization multiplexing
Spatial multiplexing (MIMO)
Statistical multiplexing
(variable bandwidth)
Packet mode · Dynamic TDM
FHSS · DSSS
OFDMA · SC-FDM · MC-SS
Related topics
Channel access methods
Media Access Control (MAC)

This box: view · talk · edit

Spread-spectrum techniques are methods by which a signal (e.g. an electrical, electromagnetic, or acoustic signal) generated in a particular bandwidth is deliberately spread in the frequency domain, resulting in a signal with a wider bandwidth. These techniques are used for a variety of reasons, including the establishment of secure communications, increasing resistance to natural interference, noise and jamming, to prevent detection, and to limit power flux density (e.g. in satellite downlinks).

Contents

History

Frequency hopping

The concept of frequency hopping was first alluded to in the 1903 U.S. Patent 723,188 and U.S. Patent 725,605 filed by Nikola Tesla in July 1900. Tesla came up with the idea after demonstrating the world's first radio-controlled submersible boat in 1898, when it became apparent the wireless signals controlling the boat needed to be secure from "being disturbed, intercepted, or interfered with in any way." His patents covered two fundamentally different techniques for achieving immunity to interference, both of which functioned by altering the carrier frequency or other exclusive characteristic. The first had a transmitter that worked simultaneously at two or more separate frequencies and a receiver in which each of the individual transmitted frequencies had to be tuned in, in order for the control circuitry to respond. The second technique used a variable-frequency transmitter controlled by an encoding wheel that altered the transmitted frequency in a predetermined manner. These patents describe the basic principles of frequency hopping and frequency-division multiplexing, and also the electronic AND-gate logic circuit.

Frequency hopping is also mentioned in radio pioneer Jonathan Zenneck's book Wireless Telegraphy (German, 1908, English translation McGraw Hill, 1915), although Zenneck himself states that Telefunken had already tried it several years earlier. Zenneck's book was a leading text of the time, and it is likely that many later engineers were aware of it. The German military made limited use of frequency hopping for communication between fixed command points in World War I to prevent eavesdropping by British forces, who did not have the technology to follow the sequence.[1] A Polish engineer, Leonard Danilewicz, came up with the idea in 1929.[2] Several other patents were taken out in the 1930s, including one by Willem Broertjes (Germany 1929, U.S. Patent 1,869,695, 1932). During World War II, the US Army Signal Corps was inventing a communication system called SIGSALY for communication between Roosevelt and Churchill, which incorporated spread spectrum, but due to its top secret nature, SIGSALY's existence did not become known until the 1980s.

The most celebrated invention of frequency hopping was that of actress Hedy Lamarr and composer George Antheil, who in 1942 received U.S. Patent 2,292,387 for their "Secret Communications System". Lamarr had learned at defense meetings she had attended with her former husband Friedrich Mandl that radio-guided missiles' signals could easily be jammed.[3] The Antheil–Lamarr version of frequency hopping used a piano-roll to change among 88 frequencies, and was intended to make radio-guided torpedoes harder for enemies to detect or to jam. The patent came to light during patent searches in the 1950s when ITT Corporation and other private firms began to develop Code Division Multiple Access (CDMA), a civilian form of spread spectrum, though the Lamarr patent had no direct impact on subsequent technology. It was in fact ongoing military research at MIT Lincoln Laboratory, Magnavox Government & Industrial Electronics Corporation, ITT and Sylvania Electronic Systems that led to early spread-spectrum technology in the 1950s. Parallel research on radar systems and a technologically similar concept called "phase coding" also had an impact on spread-spectrum development.

Commercial use

The 1976 publication of Spread Spectrum Systems by Robert Dixon, ISBN 0-471-21629-1, was a significant milestone in the commercialization of this technology. Previous publications were either classified military reports or academic papers on narrow subtopics. Dixon's book was the first comprehensive unclassified review of the technology and set the stage for increasing research into commercial applications.

Initial commercial use of spread spectrum began in the 1980s in the US with three systems: Equatorial Communications System's very small aperture (VSAT) satellite terminal system for newspaper newswire services, Del Norte Technology's radio navigation system for navigation of aircraft for crop dusting and similar applications, and Qualcomm's OmniTRACS system for communications to trucks. In the Qualcomm and Equatorial systems, spread spectrum enabled small antennas that viewed more than one satellite to be used since the processing gain of spread spectrum eliminated interference. The Del Norte system used the high bandwidth of spread spectrum to improve location accuracy.

In 1981, the Federal Communications Commission started exploring ways to permit more general civil uses of spread spectrum in a Notice of Inquiry docket.[4] This docket was proposed to FCC and then directed by Michael Marcus of the FCC staff. The proposals in the docket were generally opposed by spectrum users and radio equipment manufacturers, although they were supported by the then Hewlett-Packard Corp. The laboratory group supporting the proposal would later become part of Agilent.

The May 1985 decision[5] in this docket permitted unlicensed use of spread spectrum in 3 bands at powers up to 1 Watt. FCC said at the time that it would welcome additional requests for spread spectrum in other bands.The resulting rules, now codified as 47 CFR 15.247[6] permitted Wi-Fi, Bluetooth, and many other products including cordless telephones. These rules were then copied in many other countries. Qualcomm was incorporated within 2 months after the decision to commercialize CDMA.

Spread-spectrum telecommunications

This is a technique in which a (telecommunication) signal is transmitted on a bandwidth considerably larger than the frequency content of the original information.

Spread-spectrum telecommunications is a signal structuring technique that employs direct sequence, frequency hopping, or a hybrid of these, which can be used for multiple access and/or multiple functions. This technique decreases the potential interference to other receivers while achieving privacy. Spread spectrum generally makes use of a sequential noise-like signal structure to spread the normally narrowband information signal over a relatively wideband (radio) band of frequencies. The receiver correlates the received signals to retrieve the original information signal. Originally there were two motivations: either to resist enemy efforts to jam the communications (anti-jam, or AJ), or to hide the fact that communication was even taking place, sometimes called low probability of intercept (LPI).

Frequency-hopping spread spectrum (FHSS), direct-sequence spread spectrum (DSSS), time-hopping spread spectrum (THSS), chirp spread spectrum (CSS), and combinations of these techniques are forms of spread spectrum. Each of these techniques employs pseudorandom number sequences — created using pseudorandom number generators — to determine and control the spreading pattern of the signal across the alloted bandwidth. Ultra-wideband (UWB) is another modulation technique that accomplishes the same purpose, based on transmitting short duration pulses. Wireless Ethernet standard IEEE 802.11 uses either FHSS or DSSS in its radio interface.

Techniques

  • Techniques known since the 1940s and used in military communication systems since the 1950s "spread" a radio signal over a wide frequency range several magnitudes higher than minimum requirement. The core principle of spread spectrum is the use of noise-like carrier waves, and, as the name implies, bandwidths much wider than that required for simple point-to-point communication at the same data rate.
  • Resistance to jamming (interference). DS (direct sequence) is better at resisting continuous-time narrowband jamming, while FH (frequency hopping) is better at resisting pulse jamming. In DS systems, narrowband jamming affects detection performance about as much as if the amount of jamming power is spread over the whole signal bandwidth, when it will often not be much stronger than background noise. By contrast, in narrowband systems where the signal bandwidth is low, the received signal quality will be severely lowered if the jamming power happens to be concentrated on the signal bandwidth.
  • Resistance to eavesdropping. The spreading code (in DS systems) or the frequency-hopping pattern (in FH systems) is often unknown by anyone for whom the signal is unintended, in which case it "encrypts" the signal and reduces the chance of an adversary's making sense of it. What's more, for a given noise power spectral density (PSD), spread-spectrum systems require the same amount of energy per bit before spreading as narrowband systems and therefore the same amount of power if the bitrate before spreading is the same, but since the signal power is spread over a large bandwidth, the signal PSD is much lower, often significantly lower than the noise PSD, therefore the adversary may be unable to determine if the signal exists at all. However, for mission-critical applications, particularly those employing commercially available radios, spread-spectrum radios do not intrinsically provide adequate security; "...just using spread-spectrum radio itself is not sufficient for communications security".[7]
  • Resistance to fading. The high bandwidth occupied by spread-spectrum signals offer some frequency diversity, i.e. it is unlikely that the signal would encounter severe multipath fading over its whole bandwidth, and in other cases the signal can be detected using e.g. a Rake receiver.
  • Multiple access capability. Multiple users can transmit simultaneously on the same frequency (range) as long as they use different spreading codes. See CDMA.

Spread-spectrum clock signal generation

Spread spectrum of a modern switching power supply (heating up period) incl. waterfall diagram over a few minutes. Recorded with a NF-5030 EMC-Analyzer

Spread-spectrum clock generation (SSCG) is used in some synchronous digital systems, especially those containing microprocessors, to reduce the spectral density of the electromagnetic interference (EMI) that these systems generate. A synchronous digital system is one that is driven by a clock signal and, because of its periodic nature, has an unavoidably narrow frequency spectrum. In fact, a perfect clock signal would have all its energy concentrated at a single frequency and its harmonics. Practical synchronous digital systems radiate electromagnetic energy on a number of narrow bands spread on the clock frequency and its harmonics, resulting in a frequency spectrum that, at certain frequencies, can exceed the regulatory limits for electromagnetic interference (e.g. those of the FCC in the United States, JEITA in Japan and the IEC in Europe).

Spread-spectrum clocking avoids this problem by using one of the methods previously described to reduce the peak radiated energy and, therefore, its electromagnetic emissions and so comply with electromagnetic compatibility (EMC) regulations.

It has become a popular technique to gain regulatory approval because it only requires simple equipment modification. It is even more popular in portable electronics devices because of faster clock speeds and increasing integration of high-resolution LCD displays into ever smaller devices. Since these devices are designed to be lightweight and inexpensive, traditional passive, electronic measures to reduce EMI, such as capacitors or metal shielding, are not viable. Active EMI reduction techniques such as spread-spectrum clocking are needed in these cases.

However, spread-spectrum clocking can also create challenges for designers. Principal among these is clock/data misalignment, or clock skew [expand how that happens, or refer to another article].

Note that this method does not reduce total radiated energy, and therefore systems are not necessarily less likely to cause interference. Spreading energy over a larger bandwidth effectively reduces electrical and magnetic readings within narrow bandwidths. Typical measuring receivers used by EMC testing laboratories divide the electromagnetic spectrum into frequency bands approximately 120 kHz wide.[8] If the system under test were to radiate all its energy in a narrow bandwidth, it would register a large peak. Distributing this same energy into a larger bandwidth prevents systems from putting enough energy into any one narrowband to exceed the statutory limits. The usefulness of this method as a means to reduce interference is often debated, since it is perceived that spread-spectrum clocking hides rather than resolves higher radiated energy issues by simple exploitation of loopholes in EMC legislation or certification procedures. This situation results in electronic equipment sensitive to narrow bandwidth(s) experiencing much less interference, while those with broadband sensitivity, or even operated at other frequencies (such as a radio receiver tuned to a different station), will experience more interference.

FCC certification testing is often completed with the spread-spectrum function enabled in order to reduce the measured emissions to within acceptable legal limits. However, the spread-spectrum functionality may be disabled by the user in some cases. As an example, in the area of personal computers, some BIOS writers include the ability to disable spread-spectrum clock generation as a user setting, thereby defeating the object of the EMI regulations. This might be considered a loophole, but is generally overlooked as long as spread-spectrum is enabled by default.

An ability to disable spread-spectrum clocking in computer systems is considered useful for overclocking, as spread spectrum can lower maximum clock speed achievable due to clock skew.

See also

Notes

  1. ^ Denis Winter, Haig's Command - A Reassessment
  2. ^ Danilewicz later recalled: "In 1929 we proposed to the General Staff a device of my design for secret radio telegraphy which fortunately did not win acceptance, as it was a truly barbaric idea consisting in constant changes of transmitter frequency. The commission did, however, see fit to grant me 5,000 złotych for executing a model and as encouragement to further work." Cited in Władysław Kozaczuk, Enigma: How the German Machine Cipher Was Broken, and How It Was Read by the Allies in World War II, 1984, p. 27.
  3. ^ David Shier (2003-06-21). "The Hedy Lamarr Story". Archived from the original on 2007-10-14. http://web.archive.org/web/20071014035401/http://bluetoothnews.com/hedy_lamarr_story.htm. Retrieved 2010-03-09. 
  4. ^ Notice of Inquiry, General Docket 81-413
  5. ^ Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations
  6. ^ 47 CFR 15.247
  7. ^ Shaw, William T. (2006). Cyber Security for SCADA Systems. PennWell Books. p. 76. ISBN 1593700687, 9781593700683. 
  8. ^ American National Standard for Electromagnetic Noise and Field Strength Instrumentation, 10 Hz to 40 GHz—Specifications, ANSI C63.2-1996, Section 8.2 Overall Bandwidth

Sources

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Spread Spectrum — Mit Frequenzspreizung bezeichnet man in der Informationsübertragung per Funk ein Verfahren, bei dem ein schmalbandiges Signal in ein Signal mit einer größeren Bandbreite als für die Informationsübertragung nötig umgewandelt wird. Die Sendeenergie …   Deutsch Wikipedia

  • spread spectrum — plėstinis spektras statusas T sritis radioelektronika atitikmenys: angl. spread spectrum vok. Ausbreitungsspektrum, n rus. расширенный спектр, m pranc. spectre étalé, m …   Radioelektronikos terminų žodynas

  • Spread Spectrum Modulation — Mit Frequenzspreizung bezeichnet man in der Informationsübertragung per Funk ein Verfahren, bei dem ein schmalbandiges Signal in ein Signal mit einer größeren Bandbreite als für die Informationsübertragung nötig umgewandelt wird. Die Sendeenergie …   Deutsch Wikipedia

  • Spread Spectrum Clocking — Unter Spread Spectrum Clocking, abgekürzt SSC, wird in der synchronen Digitaltechnik eine Form von speziellen Taktsignal (engl. Clock) verstanden, um elektromagnetische Störungen zu minimieren. Dabei wird das Taktsignal in einem bestimmten… …   Deutsch Wikipedia

  • spread spectrum system — plėstinio spektro sistema statusas T sritis automatika atitikmenys: angl. spread spectrum system vok. Spektrumausbreitungssystem, n rus. система с расширенным спектром, f pranc. système avec étalement du spectre, m …   Automatikos terminų žodynas

  • spread spectrum phase-shift keying — plėstinio spektro fazės manipuliavimas statusas T sritis radioelektronika atitikmenys: angl. spread spectrum phase shift keying vok. Phasentastung mit Spektralausbreitung, f rus. фазовая манипуляция с расширенным спектром, f pranc. modulation par …   Radioelektronikos terminų žodynas

  • spread spectrum multiple access — daugkartinė plėstinio spektro kreiptis statusas T sritis radioelektronika atitikmenys: angl. spread spectrum multiple access vok. Spektrumausbreitungsmehrfachzugriff, m rus. многократный доступ с расширенным спектром, m pranc. accès multiple par… …   Radioelektronikos terminų žodynas

  • spread spectrum communication — noun A form of electromagnetic communication in which the signal frequency or bandwidth is spread beyond that required, rendering it more difficult to intercept or jam, or to send multiple signals over the same band …   Wiktionary

  • spread spectrum —    A transmission technique in which the message is transmitted in a bandwidth considerably greater than the frequency content of the original message …   IT glossary of terms, acronyms and abbreviations

  • Chirp spread spectrum — A linear frequency modulated upchirp in the time domain In digital communications, Chirp spread spectrum (CSS) is a spread spectrum technique that uses wideband linear frequency modulated chirp pulses to encode information.[1] A chirp is a… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”