Power network design (IC)


Power network design (IC)

In integrated circuits, electrical power is distributed to the components of the chip over a network of conductors on the chip. Power network design (IC) includes the analysis and design of such networks. As in all engineering, this involves tradeoffs - the network must have adequate performance, be sufficiently reliable, but should not use more resources than required.

Introduction

The power distribution network distributes power and ground voltages from pad locations to all devices in a design.
Shrinking device dimensions, faster switching frequencies and increasing power consumption in deep sub-micrometre technologies cause large switching currents to flow in the power and ground networks which degrade performance and reliability. A robust power distribution network is essential to ensure reliable operation of circuits on a chip. Power supply integrity verification is a critical concern in high-performance designs. Due to the resistance of the interconnects constituting the network, there is a voltage drop across the network, commonly referred to as the "IR-drop". The package supplies currents to the pads of the power grid either by means of package leads in wire-bond chips or through "C4 bump arrays" in flip chip technology. Although the resistance of package is quite small, the inductance of package leads is significant which causes a voltage drop at the pad locations due to the time varying current drawn by the devices on die. This voltage drop is referred to as the " di/dt-drop". Therefore the voltage seen at the devices is the supply voltage minus the IR-drop and di/dt-drop.

Excessive voltage drops in the power grid reduce switching speeds and noise margins of circuits, and inject noise which might lead to functional failures. High average current densities lead to undesirable wearing out of metal wires due to electromigration (EM). Therefore, the challenge in the design of a power distribution network is in achieving excellent voltage regulation at the consumption points notwithstanding the wide fluctuations in power demand across the chip, and to build such a network using minimum area of the metal layers. These issues are prominent in high performance chips such as microprocessors, since large amounts of power have to be distributed through a hierarchy of many metal layers. A robust power distribution network is vital in meeting performance guarantees and ensuring reliable operation.

Capacitance between power and ground distribution networks, referred to as decoupling capacitors or "decaps", acts as local charge storage and is helpful in mitigating the voltage drop at supply points. Parasitic capacitance between metal wires of supply lines, device capacitance of the non-switching devices, and capacitance between N-well and substrate, occur as implicit decoupling capacitance in a power distribution network. Unfortunately, this implicit decoupling capacitance is sometimes not enough to constrain the voltage drop within safe bounds and designers often have to add intentional explicit decoupling capacitance structures on the die at strategic locations. These explicitly added decoupling capacitances are not free and increase the area and leakage power consumption of the chip. Parasitic interconnect resistance, decoupling capacitance and package/interconnect inductance form a complex RLC circuit which has its own resonance frequency. If the resonance frequency lies close to the operating frequency of the design, large voltage drops can develop in the grid.

The crux of the problem in designing a power grid is that there are many unknowns until the very end of the design cycle. Nevertheless, decisions about the structure, size and layout of the power grid have to be made at very early stages when a large part of the chip design has not even begun. Unfortunately, most commercial tools focus on post-layout verification of the power grid when the entire chip design is complete and detailed information about the parasitics of the power and ground lines and the currents drawn by the transistors are known. Power grid problems revealed at this stage are usually very difficult or expensive to fix, so the preferred methodologeis help to design an initial power grid and refine it progressively at various design stages.

Due to the growth in power consumption and switching speeds of modern high performance microprocessors, the " di/dt" effects are becoming a growing concern in high speed designs. Clock gating, which is a preferred scheme for power management of high performance designs, can cause rapid surges in current demands of macro-blocks and increase "di/dt" effects. Designers rely on the on-chip parasitic capacitances and intentionally added decoupling capacitors to counteract the "di/dt" variations in the voltage. But it is necessary to model accurately the inductance and capacitance of the package and chip and analyze the grid with such models, as otherwise the amount of decoupling to be added might be underestimated or overestimated. Also it is necessary to maintain the efficiency of the analysis even when including these detailed models.

A critical issue in the analysis of power grids is the large size of the network (typically millions of nodes in a state-of-the-art microprocessor). Simulating all the non-linear devices in the chip together with the power grid is computationally infeasible. Tomake the size manageable, the simulation is done in two steps. First, the non-linear devices are simulated assuming perfect supplyvoltages and the currents drawn by the devices are measured. Next, these devices are modeled as independent time-varying currentsources for simulating the power grid and the voltage drops at the transistors are measured. Since voltage drops are typically less than 10% of the power supply voltage, the error incurred by ignoring the interaction between the device currents and the supply voltage is small. By doing these two steps, the power grid analysis problem reduces to solving a linear network which is still quite large. To further reduce the network size, we can exploit the hierarchy in the power distribution models.

Note that the circuit currents are not independent due to signal correlations between blocks. This is addressed by deriving the inputs for individual blocks of the chip from the results of logic simulation using a common set of chip-wide input patterns. An important issue in power grid analysis is to determine what these input patterns should be. For IR-drop analysis, patterns that produce maximum instantaneous currents are required, whereas for electromigration purposes, patterns producing large sustained (average) currents are of interest.

Power grid analysis can be classified into "input vector dependent" methods and "vectorless" methods. The input vector pattern dependent methods employ search techniques to find a set of input patterns which cause the worst drop in the grid. A number of methods have been proposed in literature which use genetic algorithms or other search techniques to find vectors or a pattern of vectors that maximize the total current drawn from the supply network. Input vector-pattern dependent approaches are computationally intensive and are limited to circuit blocks rather than full-chip analysis. Furthermore, these approaches are inherently optimistic, underestimating the voltage drop and thus letting some of the supply noise problems go unnoticed. The vectorless approaches, on the other hand, aim to compute an upper bound on the worst-case drop in an efficient manner. These approaches have the advantage of being fast and conservative, but aresometimes too conservative, leading to overdesign.

Most of the literature on power network analysis deals with theissue of computing the worst voltage drops in the power network.Electromigration is an equally serious concern, but is attacked withalmost identical methods. Instead of the voltage at each node, EManalysis solves for current in each branch, and instead of a voltagelimit, there is a current limit per wire, depending on its layer andwidth.

Other IC applications may use only a portions of the flows mentioned here.A gate array or field programmable gate array (FPGA) designer, for example, willonly do only the design stages, since the detailed usage of theseparts is not known when the power supply must be designed. Likewise, a userof FPGAs or gate arrays will only use the analysis portion, as the designis already fixed.

References

*"Electronic Design Automation For Integrated Circuits Handbook", by Lavagno, Martin, and Scheffer, ISBN 0-8493-3096-3 A survey of the field of electronic design automation. This summary was derived (with permission) from Vol II, Chapter 20, "Design and Analysis of Power Supply Networks", by David Blaauw, Sanjay Pant, Rajat Chaudhry, and Rajendran Panda.


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Power line communication — or power line carrier (PLC), also known as power line digital subscriber line (PDSL), mains communication, power line telecom (PLT), power line networking (PLN), or broadband over power lines (BPL) are systems for carrying data on a conductor… …   Wikipedia

  • Power supply unit (computer) — Power supply unit with top cover removed A power supply unit (PSU) supplies direct current (DC) power to the other components in a computer. It converts general purpose alternating current (AC) electric power from the mains (110 V to… …   Wikipedia

  • Power factor — For other uses, see Power factor (pistol). The power factor of an AC electric power system is defined as the ratio of the real power flowing to the load over the apparent power in the circuit,[1][2] and is a dimensionless number between 0 and 1… …   Wikipedia

  • Network neutrality — This article is about the general principle of network neutrality. For its specific application to Canada, see Network neutrality in Canada. For its application to the U.S., see Network neutrality in the United States. Network Neutrality Related… …   Wikipedia

  • Network topology — Diagram of different network topologies. Network topology is the layout pattern of interconnections of the various elements (links, nodes, etc.) of a computer[1][2] …   Wikipedia

  • Design management — is the business side of design. Design managers need to speak the language of the business and the language of design …   Wikipedia

  • Network On Chip — or Network on a Chip (NoC or NOC) is an approach to designing the communication subsystem between IP cores in a System on a Chip (SoC). NoCs can span synchronous and asynchronous clock domains or use unclocked asynchronous logic. NoC applies… …   Wikipedia

  • Power engineering — Power engineering, also called power systems engineering, is a subfield of electrical engineering that deals with the generation, transmission and distribution of electric power as well as the electrical devices connected to such systems… …   Wikipedia

  • Power systems CAD — refers to computer aided design (CAD) software tools that are used to design and simulate complex electrical power systems. Such power systems are typically found in mission critical facilities such as computer data centers, network operations… …   Wikipedia

  • Network-Centric Service-Oriented Enterprise (NCSOE) — is a new generation enterprise capable of conducting collaboration and management of internal and external information. Using Network Centric Enterprise Services (NCES) , the enterprise can now enforce information and decision superiority in a… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.