Pure mathematics


Pure mathematics

Broadly speaking, pure mathematics is mathematics motivated entirely for reasons other than application. It is distinguished by its rigour, abstraction and beauty. From the eighteenth century onwards, this was a recognized category of mathematical activity, sometimes characterised as "speculative mathematics", [See for example titles of works by Thomas Simpson from the mid-18th century: "Essays on Several Curious and Useful Subjects in Speculative and Mixed Mathematicks", "Miscellaneous Tracts on Some Curious and Very Interesting Subjects in Mechanics, Physical Astronomy and Speculative Mathematics". [http://www.1911encyclopedia.org/Thomas_Simpson] ] and at variance with the trend towards meeting the needs of navigation, astronomy, physics, engineering, and so on.

History

Ancient Greece

Ancient Greek mathematicians were among the earliest to make a distinction between pure and applied mathematics. Plato helped to create the gap between "arithmetic", now called Number theory, and "logistic", now called arithmetic. Plato regarded logistic as appropriate for business men and men of war who "must learn the art of numbers or he will not know how to array his troops," while arithmetic was appropriate for philosophers "because he has to arise out of the sea of change and lay hold of true being." [cite book|first=Carl B. |last=Boyer |authorlink=Carl Benjamin Boyer |title=A History of Mathematics |edition=Second Edition |publisher=John Wiley & Sons, Inc. |year=1991 |isbn=0471543977|chapter=The age of Plato and Aristotle|pages=86|quote=Plato is important in the history of mathematics largely for his role as inspirer and director of others, and perhaps to him is due the sharp distinction in ancient Greece between arithmetic (in the sense of the theory of numbers) and logistic (the technique of computation). Plato regarded logistic as appropriate for the businessman and for the man of war, who "must learn the art of numbers or he will not know how to array his troops." The philosopher, on the other hand, must be an arithmetician "because he has to arise out of the sea of change and lay hold of true being."] Euclid of Alexandria, when asked by one of his students of what use was the study of geometry, asked his slave to give the student threepence, "since he must needs make gain of what he learns." [cite book|first=Carl B. |last=Boyer |authorlink=Carl Benjamin Boyer |title=A History of Mathematics |edition=Second Edition |publisher=John Wiley & Sons, Inc. |year=1991 |isbn=0471543977|chapter=Euclid of Alexandria |pages=101 |quote=Evidently Euclid did not stress the practical aspects of his subject, for there is a tale told of him that when one of his students asked of what use was the study of geometry, Euclid asked his slave to hive the student threepence, "since he must needs make gain of what he learns."] The Greek mathematician Apollonius of Perga was asked about the usefulness of some of his theorems in Book IV of "Conics" to which he proudly asserted,cite book|first=Carl B. |last=Boyer |authorlink=Carl Benjamin Boyer |title=A History of Mathematics |edition=Second Edition |publisher=John Wiley & Sons, Inc. |year=1991 |isbn=0471543977|chapter=Apollonius of Perga|pages=152|quote=It is in connection with the theorems in this book that Apollonius makes a statement implying that in his day, as in ours, there were narrow-minded opponents of pure mathematics who pejoratively inquired about the usefulness of such results. The author proudly asserted: "They are worthy of acceptance for the sake of the demonstrations themselves, in the same way as we accept many other things in mathematics for this and for no other reason." (Heath 1961, p.lxxiv).
The preface to Book V, relating to maximum and minimum straight lines drawn to a conic, again argues that "the subject is one of those which seems worthy of study for their own sake." While one must admire the author for his lofty intellectual attitude, it may be pertinently pointed out that s day was beautiful theory, with no prospect of applicability to the science or engineering of his time, has since become fundamental in such fields as terrestrial dynamics and celestial mechanics.
]

They are worthy of acceptance for the sake of the demonstrations themselves, in the same way as we accept many other things in mathematics for this and for no other reason.
And since many of his results were not applicable to the science or engineering of his day, Apollonius further argued in the preface of the fifth book of "Conics" that "the subject is one of those which seems worthy of study for their own sake."

19th century

The term itself is enshrined in the full title of the Sadleirian Chair, founded (as a professorship) in the mid-nineteenth century. The idea of a separate discipline of "pure" mathematics may have emerged at that time. The generation of Gauss made no sweeping distinction of the kind, between "pure" and "applied". In the following years, specialisation and professionalisation (particularly in the Weierstrass approach to mathematical analysis) started to make a rift more apparent.

20th century

At the start of the twentieth century mathematicians took up the axiomatic method, strongly influenced by David Hilbert's example. The logical formulation of pure mathematics suggested by Bertrand Russell in terms of a quantifier structure of propositions seemed more and more plausible, as large parts of mathematics became axiomatised and thus subject to the simple criteria of "rigorous proof".

In fact in an axiomatic setting "rigorous" adds nothing to the idea of "proof". Pure mathematics, according to a view that can be ascribed to the Bourbaki group, is what is proved. Pure mathematician became a recognized vocation, to be achieved through training.

Generality and abstraction

One central concept in pure mathematics is the idea of generality; pure mathematics often exhibits a trend towards increased generality. Generality has many different manifestations, such as proving theorems under weaker assumptions, or defining mathematical structures using fewer assumptions. Although generality is sometimes pursued or valued for its own sake, it has certain benefits, including:

* Generalizing theorems or mathematical structures can lead to deeper understanding of the original theorems or structures: by exploring the implications of weakening the assumptions, one gains a better understanding of the role those assumptions play in the original theorems or structures.
* Generality can simplify the presentation of material, resulting in shorter proofs or arguments that are easier to follow.
* One can use generality to avoid duplication of effort, proving a general result instead of having to prove separate cases independently, or using results from other areas of mathematics.
* Generality can facilitate connections between different branches of mathematics, by emphasizing commonality of structure that may not be apparent at less general levels. Category theory is one area of mathematics dedicated to exploring this commonality of structure as it plays out in some areas of math.

Generality's impact on intuition is both dependent on the subject and a matter of personal preference or learning style. Often generality is seen as a hindrance to intuition, although it can certainly function as an aid to it, especially when it provides analogies to material for which one already has good intuition.

As a prime example of generality, the Erlangen program involved an expansion of Geometry to accommodate Non-euclidean geometries as well as the field of topology, and other forms of geometry, by viewing geometry as the study of a space together with a group of transformations. The study of numbers, called algebra at the beginning undergraduate level, extends to abstract algebra at a more advanced level; and the study of functions, called calculus at the college freshman level becomes mathematical analysis and functional analysis at a more advanced level. Each of these branches of more "abstract" mathematics have many sub-specialties, and there are in fact many connections between pure mathematics and applied mathematics disciplines. Undeniably, though, a steep rise in abstraction was seen mid 20th century.

In practice, however, these developments led to a sharp divergence from physics, particularly from 1950 to 1980. Later this was criticised, for example by Vladimir Arnold, as too much Hilbert, not enough Poincaré. The point does not yet seem to be settled (unlike the foundational controversies over set theory), in that string theory pulls one way, while discrete mathematics pulls back towards proof as central.

Purism

Mathematicians have always had differing opinions regarding the distinction between pure and applied mathematics. One of the most famous (but perhaps misunderstood) modern examples of this debate can be found in G.H. Hardy's "A Mathematician's Apology".

It is widely believed that Hardy considered applied mathematics to be ugly and dull. Although it is true that Hardy preferred pure mathematics, which he often compared to painting and poetry, Hardy saw the distinction between pure and applied mathematics to be simply: that applied mathematics sought to express "physical" truth in a mathematical framework, whereas pure mathematics expressed truths that were independent of the physical world. Hardy made a separate distinction in mathematics between what he called "real" mathematics, "which has permanent aesthetic value", and "the dull and elementary parts of mathematics" that have practical use.

Hardy considered some physicists, such as Einstein and Dirac, to be among the "real" mathematicians, but at the time that he was writing the "Apology" he also considered general relativity and quantum mechanics to be "useless", which allowed him to hold the opinion that only "dull" mathematics was useful. Moreover, Hardy briefly admitted that--just as the application of matrix theory and group theory to physics had come unexpectedly--the time may come where some kinds of beautiful, "real" mathematics may be useful as well.

ubfields in pure mathematics

Analysis is concerned with the properties of functions. It deals with concepts such as continuity, limits, differentiation and integration, thus providing a rigorous foundation for the calculus of infinitesimals introduced by Newton and Leibniz in the 17th century. Real analysis studies functions of real numbers, while complex analysis extends the aforementioned concepts to functions of complex numbers. Functional analysis is a branch of analysis that studies infinite-dimensional vector spaces and views functions as points in these spaces.

Abstract algebra is not to be confused with the manipulation of formulae that is covered in secondary education. It studies sets together with binary operations defined on them. Sets and their binary operations may be classified according to their properties: for instance, if an operation is associative on a set which contains an identity element and inverses for each member of the set, the set and operation is considered to be a group. Other structures include rings, fields and vector spaces.

Geometry is the study of shapes and space, in particular, groups of transformations that act on spaces. For example, projective geometry is about the group of projective transformations that act on the real projective plane, whereas inversive geometry is concerned with the group of inversive transformations acting on the extended complex plane. Geometry has been extended to topology, which deals with objects known as topological spaces and continuous maps between them. Topology is concerned with the way in which a space is connected and ignores precise measurements of distance or angle.

Number theory is the theory of the positive integers. It is based on ideas such as divisibility and congruence. Its fundamental theorem states that each positive integer has a unique prime factorization. In some ways it is the most accessible discipline in pure mathematics for the general public: for instance the Goldbach conjecture is easily stated (but is yet to be proved or disproved). In other ways it is the least accessible discipline; for example, Wiles' proof that Fermat's equation has no nontrivial solutions requires understanding automorphic forms, which though intrinsic to nature have not found a place in Physics or in public discourse.

Quotes

*"There is no branch of mathematics, however abstract, which may not someday be applied to the phenomena of the real world." Nikolai Lobachevsky

*"God does not care about our mathematical difficulties - he integrates empirically." Albert Einstein

Notes

ee also

*Applied mathematics
*Logic
*Metamathematics
*Metalogic
*Difficulties in Pure Maths

External links

* [http://www.math.uwaterloo.ca/PM_Dept/What_Is/what_is.shtml "What is Pure Mathematics?" Department of Pure Mathematics, University of Waterloo]
* [http://www.liv.ac.uk/maths/PURE/wipm.html " What is Pure Mathematics?" by Professor P.J. Giblin The University of Liverpool]
* [http://fair-use.org/bertrand-russell/the-principles-of-mathematics " The Principles of Mathematics " by Bertrand Russell]
* [http://hk.mathphy.googlepages.com/puremath.htm How to Become a Pure Mathematician (or Statistician)] - a List of Undergraduate and Basic Graduate Textbooks and Lecture Notes, with several comments and links to solution, companion site, data set, errata page, etc.


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Pure mathematics — Pure Pure, a. [Compar. {Purer}; superl. {Purest}.] [OE. pur, F. pur, fr. L. purus; akin to putus pure, clear, putare to clean, trim, prune, set in order, settle, reckon, consider, think, Skr. p? to clean, and perh. E. fire. Cf. {Putative}.] 1.… …   The Collaborative International Dictionary of English

  • Pure mathematics — Abstract Ab stract (#; 277), a. [L. abstractus, p. p. of abstrahere to draw from, separate; ab, abs + trahere to draw. See {Trace}.] 1. Withdraw; separate. [Obs.] [1913 Webster] The more abstract . . . we are from the body. Norris. [1913 Webster] …   The Collaborative International Dictionary of English

  • pure mathematics — noun the branches of mathematics that study and develop the principles of mathematics for their own sake rather than for their immediate usefulness • Hypernyms: ↑mathematics, ↑math, ↑maths • Hyponyms: ↑arithmetic, ↑geometry, ↑numerical analysis,… …   Useful english dictionary

  • pure mathematics — noun Mathematics which is done for its own sake rather than being motivated by other sciences. Ant: applied mathematics …   Wiktionary

  • pure mathematics — theoretical mathematics, abstract mathematics …   English contemporary dictionary

  • pure mathematics — plural noun see mathematics …   English new terms dictionary

  • A Course of Pure Mathematics — Cover of Third Revision 1921 A Course of Pure Mathematics (ISBN 0521720559) is a classic textbook in introductory mathematical analysis, written by G. H. Hardy. It is recommended for people studying calculus. First publish …   Wikipedia

  • Fielden Chair of Pure Mathematics — The Fielden Chair of Pure Mathematics is an endowed professorial position in the School of Mathematics, University of Manchester, England. In 1870 Samuel Fielden, a wealthy mill owner from Todmorden, donated £150 to Owen s College (as the… …   Wikipedia

  • Sadleirian Professor of Pure Mathematics — The Sadleirian Chair is a Professorship in pure mathematics at the University of Cambridge.It was established in 1701 by Lady Mary Sadleir, who made provision in her will for lecturers in algebra to be funded at nine colleges in the university.… …   Wikipedia

  • Pure — Pure, a. [Compar. {Purer}; superl. {Purest}.] [OE. pur, F. pur, fr. L. purus; akin to putus pure, clear, putare to clean, trim, prune, set in order, settle, reckon, consider, think, Skr. p? to clean, and perh. E. fire. Cf. {Putative}.] 1.… …   The Collaborative International Dictionary of English


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.