Headward erosion


Headward erosion

Headward erosion is a fluvial process of erosion that lengthens a stream, a valley or a gully at its head and also enlarges its drainage basin. The stream erodes away at the rock and soil at its headwaters in the opposite direction that it flows. Once a stream has begun to cut back, the erosion is sped up by the steep gradient the water is flowing down. As water erodes a path from its headwaters to its mouth at a standing body of water, it tries to cut an ever-shallower path. This leads to increased erosion at the steepest parts, which is headward erosion. If headward erosion continues long enough, it can cause a stream to break through into a neighboring watershed and capture drainage that previously flowed to another stream.

For example, headward erosion by the Shenandoah River in the U.S. state of Virginia, a tributary of the Potomac River, permitted the Shenandoah to capture successively the original upstream segments of Beaverdam Creek, Gap Run and Goose Creek, three smaller tributaries of the Potomac. As each capture added to the Shenandoah's discharge, it accelerated the process of headward erosion until the Shenandoah captured all drainage to the Potomac west of the Blue Ridge Mountains.

tream types created by headward erosion

Three kinds of streams are formed by headward erosion: "insequent streams", "subsequent streams", and "obsequent and resequent streams" ("See Fluvial landforms of streams".) Insequent streams form by random headward erosion, usually from sheetflow of water over the landform surface. The water collects in channels where the velocity and erosional power increase, cutting into and extending the heads of gullies. Subsequent streams form by selective headward erosion by cutting away at less resistive rocks in the terrain. Obsequent and resequent streams form after time in an area of insequent or subsequent streams. Obsequent streams are insequent streams that now flow in an opposite direction of the original drainage pattern. Resequent streams are subsequent streams that have also changed direction from their original drainage patterns. (Easterbrook, p. 149)

Drainage patterns created by headward erosion

Headward erosion creates three major kinds of drainage patterns: "dendritic patterns", "trellis patterns" and "rectangular and angular patterns". Dendritic patterns form in homogenous landforms where the underlying bedrock has no structural control over where the water flows. They have a very characteristic pattern of branching at acute angles with no common or similarly repeating pattern. Trellis patterns form in where the underlying bedrock where there is repeating weaker and stronger types of rock. The trellis pattern cuts down deeper into the weaker bedrock, and is characterized by nearly parallel streams that branch at higher angles. Rectangular and angular patterns are characterized by branching of tributaries at nearly right angles and tributaries which themselves exhibit right-angle bends in their channels. These usually form in jointed igneous bedrocks, horizontal sedimentary beds with well-developed jointing or intersecting faults. (Easterbrook, p. 149-150)

Four minor kinds of drainage patterns also can be created: "radial patterns", "annular patterns", "centripetal patterns" and "parallel patterns". Radial patterns are characterized by flow of water outward from a central point, such as down a newly formed cinder volcano cone or an intrusive domes. Annular patterns form on domes of alternating weak and hard bedrocks. The pattern formed is similar to that of a bullseye when viewed from above, as the weaker bedrocks are eroded and the harder are left in place. Centripetal patterns form where water flows into a central location, such as in a karst limestone terrain where the water flows down into a sinkhole and then underground. Parallel patterns are not very common and form on unidirectional regional slope or parallel landform features. They are usually limited to a small, generalized area. (Easterbrook, p. 152)

ee also

*Lavaka

References

*Judson, S., and Kauffman, M.E.,"Physical Geology", 8th ed., Englewood Cliffs, NJ: Prentice Hall, 1990, pp. 288-289. ISBN 0-13-666405-9

*Easterbrook, Don J., "Surface Processes and Landforms", 2nd ed., Upper Saddle River, NJ: Prentice Hall, 1999, pp. 147-152. ISBN 0-13-860958-6


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • headward erosion —   the lengthening of a young valley or gully by water erosion at the head of its valley …   Geography glossary

  • Erosion — is the carrying away or displacement of solids (sediment, soil, rock and other particles) usually by the agents of currents such as, wind, water, or ice by downward or down slope movement in response to gravity or by living organisms (in the case …   Wikipedia

  • valley — valleylike, adj. /val ee/, n., pl. valleys. 1. an elongated depression between uplands, hills, or mountains, esp. one following the course of a stream. 2. an extensive, more or less flat, and relatively low region drained by a great river system …   Universalium

  • river — river1 riverless, adj. riverlike, adj. /riv euhr/, n. 1. a natural stream of water of fairly large size flowing in a definite course or channel or series of diverging and converging channels. 2. a similar stream of something other than water: a… …   Universalium

  • Geology of the Bryce Canyon area — Paria View overlooks an intermittent stream flowing toward the Paria River, s …   Wikipedia

  • Fluvial landforms of streams — The fluvial landforms of streams, stream beds, and river valleys have various landforms. Classification There are five generic classifications: Consequent streams are streams whose course is a direct consequence of the original slope of the… …   Wikipedia

  • Stream capture — Stream capture, river capture, or stream piracy is a geomorphological phenomenon occurring when a stream or river drainage system or watershed is diverted from its own bed, and flows instead down the bed of a neighbouring stream. This can happen… …   Wikipedia

  • glacial landform — ▪ geology Introduction  any product of flowing ice and meltwater. Such landforms are being produced today in glaciated areas, such as Greenland, Antarctica, and many of the world s higher mountain ranges. In addition, large expansions of present… …   Universalium

  • Colorado Plateau — A map of the Colorado Plateau. The …   Wikipedia

  • waterfall — /waw teuhr fawl , wot euhr /, n. 1. a steep fall or flow of water in a watercourse from a height, as over a precipice; cascade. 2. a manner of arranging women s hair, as in long, loose waves. [bef. 1000; ME; OE waetergefeall. See WATER, FALL] * * …   Universalium