Hypercube

Hypercube
Perspective projections
Hexahedron.svg Hypercube.svg
Cube (3-cube) Tesseract (4-cube)

In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3). It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.

An n-dimensional hypercube is also called an n-cube. The term "measure polytope" is also used, notably in the work of H.S.M. Coxeter (originally from Elte, 1912[1]), but it has now been superseded.

The hypercube is the special case of a hyperrectangle (also called an orthotope).

A unit hypercube is a hypercube whose side has length one unit. Often, the hypercube whose corners (or vertices) are the 2n points in Rn with coordinates equal to 0 or 1 is called "the" unit hypercube.

Contents

Construction

A diagram showing how to create a tesseract from a point.
0 – A point is a hypercube of dimension zero.
1 – If one moves this point one unit length, it will sweep out a line segment, which is a unit hypercube of dimension one.
2 – If one moves this line segment its length in a perpendicular direction from itself; it sweeps out a 2-dimensional square.
3 – If one moves the square one unit length in the direction perpendicular to the plane it lies on, it will generate a 3-dimensional cube.
4 – If one moves the cube one unit length into the fourth dimension, it generates a 4-dimensional unit hypercube (a unit tesseract).

This can be generalized to any number of dimensions. This process of sweeping out volumes can be formalized mathematically as a Minkowski sum: the d-dimensional hypercube is the Minkowski sum of d mutually perpendicular unit-length line segments, and is therefore an example of a zonotope.

The 1-skeleton of a hypercube is a hypercube graph.

Coordinates

A unit hypercube of n dimensions is the convex hull of the points given by all sign permutations of the Cartesian coordinates (\pm 1/2, \pm 1/2, \cdots, \pm 1/2). It has an edge length of 1 and an n-dimensional volume of 1.

An n-dimensional hypercube is also often regarded as the convex hull of all sign permutations of the coordinates (\pm 1, \pm 1, \cdots, \pm 1). This form is often chosen due to ease of writing out the coordinates. Its edge length is 2, and its n-dimensional volume is 2n.

Related families of polytopes

The hypercubes are one of the few families of regular polytopes that are represented in any number of dimensions.

The hypercube (offset) family is one of three regular polytope families, labeled by Coxeter as γn. The other two are the hypercube dual family, the cross-polytopes, labeled as βn, and the simplices, labeled as αn. A fourth family, the infinite tessellations of hypercubes, he labeled as δn.

Another related family of semiregular and uniform polytopes is the demihypercubes, which are constructed from hypercubes with alternate vertices deleted and simplex facets added in the gaps, labeled as n.

Elements

A hypercube of dimension n has 2n "sides" (a 1-dimensional line has 2 end points; a 2-dimensional square has 4 sides or edges; a 3-dimensional cube has 6 2-dimensional faces; a 4-dimensional tesseract has 8 cells). The number of vertices (points) of a hypercube is 2n (a cube has 23 vertices, for instance).

A simple formula to calculate the number of "n-2"-faces in an n-dimensional hypercube is: 2n2 − 2n

The number of m-dimensional hypercubes (just referred to as m-cube from here on) on the boundary of an n-cube is

 E_{m,n} = 2^{n-m}{n \choose m} ,     where {n \choose m}=\frac{n!}{m!\,(n-m)!} and n! denotes the factorial of n.

For example, the boundary of a 4-cube (n=4) contains 8 cubes (3-cubes), 24 squares (2-cubes), 32 lines (1-cubes) and 16 vertices (0-cubes).

This identity can be proved by combinatorial arguments; each of the 2n vertices defines a vertex in a m-dimensional boundary. There are {n \choose m} ways of choosing which lines ("sides") that defines the subspace that the boundary is in. But, each side is counted 2m times since it has that many vertices, we need to divide with this number. Hence the identity above.

These numbers can also be generated by the linear recurrence relation

E_{m,n} = 2E_{m,n-1} + E_{m-1,n-1} \!,     with E_{0,0} = 1 \!,     and undefined elements = 0.

For example, extending a square via its 4 vertices adds one extra line (edge) per vertex, and also adds the final second square, to form a cube, giving E_{1,3} \! = 12 lines in total.

Hypercube elements E_{m,n} \!
m 0 1 2 3 4 5 6 7 8 9 10
n γn n-cube Names
Schläfli symbol
Coxeter-Dynkin
Vertices Edges Faces Cells (3-faces) 4-faces (Hypercells) 5-faces 6-faces 7-faces 8-faces 9-faces 10-faces
0 γ0 0-cube Point
-
1                    
1 γ1 1-cube Line segment
{}
CDel node 1.png
2 1                  
2 γ2 2-cube Square
Tetragon
{4}
CDel node 1.pngCDel 4.pngCDel node.png
4 4 1                
3 γ3 3-cube Cube
Hexahedron
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
8 12 6 1              
4 γ4 4-cube Tesseract
Octachoron
{4,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
16 32 24 8 1            
5 γ5 5-cube Penteract
Decateron
{4,3,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
32 80 80 40 10 1          
6 γ6 6-cube Hexeract
Dodecapeton
{4,3,3,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
64 192 240 160 60 12 1        
7 γ7 7-cube Hepteract
Tetradeca-7-tope
{4,3,3,3,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
128 448 672 560 280 84 14 1      
8 γ8 8-cube Octeract
Hexadeca-8-tope
{4,3,3,3,3,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
256 1024 1792 1792 1120 448 112 16 1    
9 γ9 9-cube Enneract
Octadeca-9-tope
{4,3,3,3,3,3,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
512 2304 4608 5376 4032 2016 672 144 18 1  
10 γ10 10-cube Dekeract
icosa-10-tope
{4,3,3,3,3,3,3,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
1024 5120 11520 15360 13440 8064 3360 960 180 20 1

Graphs

An n-cube can be projected inside a regular 2n-gonal polygon by a skew orthogonal projection, shown here from the line segment to the dodekeract.

Petrie polygon Orthographic projections
1-simplex t0.svg
Line segment
2-cube.svg
Square
3-cube graph.svg
Cube
4-cube graph.svg
4-cube (tesseract)
5-cube graph.svg
5-cube (penteract)
6-cube graph.svg
6-cube (hexeract)
7-cube graph.svg
7-cube (hepteract)
8-cube.svg
8-cube (octeract)
9-cube.svg
9-cube (enneract)
10-cube.svg
10-cube (dekeract)
11-cube.svg
11-cube (hendekeract)
12-cube.svg
12-cube (dodekeract)
Projection of a rotating hypercube (tesseract to be exact).

Relation to n-simplices

The graph of the n-hypercube's edges is isomorphic to the Hasse diagram of the (n-1)-simplex's face lattice. This can be seen by orienting the n-hypercube so that two opposite vertices lie vertically, corresponding to the (n-1)-simplex itself and the null polytope, respectively. Each vertex connected to the top vertex then uniquely maps to one of the (n-1)-simplex's facets (n-2 faces), and each vertex connected to those vertices maps to one of the simplex's n-3 faces, and so forth, and the vertices connected to the bottom vertex map to the simplex's vertices.

This relation may be used to generate the face lattice of an (n-1)-simplex efficiently, since face lattice enumeration algorithms applicable to general polytopes are more computationally expensive.

See also

  • Hyperoctahedral group, the symmetry group of the hypercube
  • Hypersphere
  • Simplex

Notes

  1. ^ Elte, E. L. (1912). The Semiregular Polytopes of the Hyperspaces. Groningen: University of Groningen  Chapter IV, five dimensional semiregular polytope [1]

References

  • Bowen, J. P. (April 1982). "Hypercubes". Practical Computing 5 (4): 97–99. http://www.jpbowen.com/publications/ndcubes.html. 
  • Coxeter, H. S. M. (1973). Regular Polytopes (3rd ed.). Dover. pp. 123. ISBN 0-486-61480-8.  p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n dimensions (n ≥ 5)
  • Hill, Frederick J.; Gerald R. Peterson. Introduction to Switching Theory and Logical Design: Second Edition. NY: John Wiley & Sons. ISBN 0-471-39882-9.  Cf Chapter 7.1 "Cubical Representation of Boolean Functions" wherein the notion of "hypercube" is introduced as a means of demonstrating a distance-1 code (Gray code) as the vertices of a hypercube, and then the hypercube with its vertices so labelled is squashed into two dimensions to form either a Veitch diagram or Karnaugh map.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • hypercube — n. A mathematical object existing in more than three dimensions, analogous to the cube in that each two dimensional facet of the surface is a square; a generalization of a cube in more than three dimensions. [PJC] …   The Collaborative International Dictionary of English

  • Hypercube — Pour les articles homonymes, voir Hypercube (homonymie). Une projection d un hypercube (dans une image bidimensionnelle) Un hypercube est, en géométrie, un analogue …   Wikipédia en Français

  • Hypercube — der Name Hypercube bezeichnet: ein geometrisches Gebilde, auch Hyperkubus genannt, siehe Hyperwürfel einen Film, siehe Cube 2: Hypercube Hypercube Inc., einen US amerikanischen Hersteller für Molecular Modelling Software, siehe Hypercube… …   Deutsch Wikipedia

  • hypercube — noun Date: 1909 1. a geometric figure (as a tesseract) in Euclidean space of n dimensions that is analogous to a cube in three dimensions 2. a computer architecture in which each processor is connected to n others based on analogy to a hypercube… …   New Collegiate Dictionary

  • hypercube — ˌ noun Etymology: hyper (herein) + cube (I) 1. : a geometric figure in Euclidean space of n dimensions that is analogous to a cube in three dimensions in having 2n vertices each of which is connected to n other vertices by mutu …   Useful english dictionary

  • Hypercube (Graphe) — Pour les articles homonymes, voir Hypercube (homonymie).   Cette page se comprend mieux après la lecture de Théorie des graphes. Hypercube …   Wikipédia en Français

  • Hypercube graph — The hypercube graph Q4 Vertices 2n Edges 2n−1n …   Wikipedia

  • Hypercube Magique — En mathématiques, un hypercube magique est la généralisation k dimensionnelle d un carré magique, d un cube magique et d un tesseract magique, c’est à dire, un nombre d entiers arrangés dans un motif de taille n × n × n × ... × n tel que les… …   Wikipédia en Français

  • Hypercube (graphe) — Pour les articles homonymes, voir Hypercube (homonymie).   Cette page se comprend mieux après la lecture de Théorie des graphes. Hypercube …   Wikipédia en Français

  • Hypercube magique — En mathématiques, un hypercube magique est la généralisation k dimensionnelle d un carré magique, d un cube magique et d un tesseract magique, c’est à dire, un nombre d entiers arrangés dans un motif de taille n × n × n × ... × n tel que les… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”