Einstein-aether theory

Einstein-aether theory

In physics the "Einstein-æther theory", also called "æ-theory" is a controversial generally covariant generalization of general relativity which describes a spacetime endowed with both a metric and a unit timelike vector field named the æther. In particular such theory has a preferred reference frame and so is not Lorentz invariant.

History

Einstein-æther theories were popularized by Maurizio Gasperini in a series of papers, such as [http://www.iop.org/EJ/abstract/0264-9381/4/2/026 Singularity Prevention and Broken Lorentz Symmetry] in the 1980s. In addition to the metric of general relativity these theories also included a scalar field which intuitively corresponded to a universal notion of time. Such a theory will have a preferred reference frame, that in which the universal time is the actual time. The dynamics of the scalar field is identified with that of an æther which is at rest in the preferred frame. This is the origin of the name of the theory, it contains Einstein's gravity plus an æther.

Einstein-æther theories returned to prominence at the turn of the century with the paper [http://xxx.lanl.gov/abs/gr-qc/0007031 Gravity and a Preferred Frame] by Ted Jacobson and David Mattingly. Their theory contains less information than that of Gasperini, instead of a scalar field giving a universal time it contains only a unit vector field which gives the direction of time. Thus observers who follow the æther at different points will not necessarily age at the same rate in the Jacobson-Mattingly theory.

The existence of a preferred, dynamical time vector breaks the Lorentz symmetry of the theory, more precisely it breaks the invariance under boosts. This symmetry breaking may lead to a Higgs mechanism for the graviton which would alter long distance physics, perhaps yielding an explanation for recent supernova data which would otherwise be explained by a cosmological constant. The effect of breaking Lorentz invariance on quantum field theory has a long history leading back at least to the work of Markus Fierz and Wolfgang Pauli in 1939. Recently it has regained popularity with, for example, the paper [http://xxx.lanl.gov/abs/hep-th/0210184 Effective Field Theory for Massive Gravitons and Gravity in Theory Space] by Nima Arkani-Hamed, Howard Georgi and Matthew Schwartz. Einstein-æther theories provide a concrete example of a theory with broken Lorentz invariance and so have proven to be a natural setting for such investigations.

Consistency

It is still not known whether Einstein-æther theories exist as quantum theories. One immediate concern might be that the time vector, which breaks Lorentz invariance, will lead to Faddeev-Popov ghosts which fail to decouple and ruin the theory. This problem is avoided because the vector is of unit length in a timelike direction, and so its oscillations are spacelike. Therefore it does not contribute extra time derivatives to the denominator of the propagator, which could have led to poles with a wrong-sign residue and so could have ruined the unitarity of the S-matrix.

The action

The action of the Einstein-æther theory is generally taken to consist of the sum of the Einstein-Hilbert action with a Lagrange multiplier λ that ensures that the time vector is a unit vector and also with all of the covariant terms involving the time vector "u" but having at most two derivatives.

In particular it is assumed that the action may be written as the integral of a local Lagrangian density

:::S=frac{1}{16pi G_N}int d^4xsqrt{-g}mathcal L

where "G"N is Newton's constant and "g" is a metric with Minkowski signature. The Lagrangian density is

::mathcal L=-R-K^{ab}_{mn} abla_a u^m abla_bu^n-lambda (g_{ab}u^au^b-1).

Here "R" is the Ricci scalar, abla is the covariant derivative and the tensor "K" is defined by

::K^{ab}_{mn}=c_1g^{ab}g_{mn}+c_2delta^a_mdelta^b_n+c_3delta^a_ndelta^b_m+c_4u^au^bg_{mn}.

Here the "c"i are dimensionless adjustable parameters of the theory.

olutions

tars

Several spherically symmetric solutions to æ-theory have been found. Most recently Christopher Eling and Ted Jacobson have found solutions resembling stars in [http://xxx.lanl.gov/abs/gr-qc/0603058 Spherical Solutions to Einstein-Æther Theory: Static Æther and Stars] and solutions resembling black holes in [http://xxx.lanl.gov/abs/gr-qc/0604088 Black Holes in Einstein-Æther Theory] .

In particular they have demonstrated that there are no spherically-symmetric solutions in which stars are constructed entirely from the æther. Solutions without additional matter always have either naked singularities or else two asymptotic regions of spacetime, resembling a wormhole with but with no horizon. They have argued that static stars must have "static æther" solutions, which means that the æther points in the direction of a timelike Killing vector.

Black holes and potential problems

However this is difficult to reconcile with static black holes, as at the event horizon there are no timelike Killing vectors available and so the black hole solutions cannot have static æthers. Thus when a star collapses to form a black hole, somehow the æther must eventually become static even very far away from the collapse.

In addition the stress tensor does not obviously satisfy the Raychaudhuri equation, one needs to make recourse to the equations of motion. This is in contrast with theories with no æther, where this property is independent of the equations of motion.

Experimental constraints

In [http://arxiv.org/abs/hep-ph/0407034 Universal Dynamics of Spontaneous Lorentz Violation and a New Spin-Dependent Inverse-Square Law Force] Nima Arkani-Hamed, Hsin-Chia Cheng, Markus Luty and Jesse Thaler have examined experimental consequences of the breaking of boost symmetries inherent in æther theories. They have found that the resulting Goldstone boson leads to, among other things, a new kind of Cherenkov radiation.

In addition that have argued that spin sources will interact via a new inverse square law force with a very unusual angular dependence. They suggest that the discovery of such a force would be very strong evidency for an æther theory, although not necessarily that of Jacobson, "et al".

ee also

Aether theories

References

[http://xxx.lanl.gov/pdf/gr-qc/0410001 Einstein Æther Theory] . by Christopher Eling, Ted Jacobson and David Mattingly is a review of the status of Einstein-æther theory as of 2004.


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Aether theories — See also the disambiguation page for Aether. Alchemy, natural philosophy, and early modern physics proposed the existence of a medium of the æther (also spelled ether , from the Greek word (Polytonic|αἰθήρ) aether , meaning upper air or pure,… …   Wikipedia

  • Einstein synchronisation — (or Einstein Poincaré synchronisation) is a convention in relativity for synchronizing clocks at different places.PoincaréIn the framework of Lorentz ether theory, it was stated by Henri Poincaré in 1900 that 2 observers A and B which are moving… …   Wikipedia

  • Aether drag hypothesis — In the 19th century, the theory of the luminiferous aether as the hypothetical medium for the propagation of light, was widely discussed. An important part of this discussion was the question concerning the state of motion of Earth with respect… …   Wikipedia

  • Aether (classical element) — According to ancient and medieval science, aether (Greek gr. αἰθήρ aithēr [ ether . The American Heritage Dictionary of the English Language . 4th ed. Boston: Houghton Mifflin, 2006.] ), also spelled æther or ether, is the material that fills the …   Wikipedia

  • Albert Einstein — Einstein redirects here. For other uses, see Einstein (disambiguation) …   Wikipedia

  • Einstein, Albert — born March 14, 1879, Ulm, Württemberg, Ger. died April 18, 1955, Princeton, N.J., U.S. German Swiss U.S. scientist. Born to a Jewish family in Germany, he grew up in Munich, and his family moved to Switzerland in 1894. He became a junior examiner …   Universalium

  • Luminiferous aether — The luminiferous aether: it was hypothesised that the Earth moves through a medium of aether that carries light In the late 19th century, luminiferous aether or ether, meaning light bearing aether, was the term used to describe a medium for the… …   Wikipedia

  • Criticism of relativity theory — Criticism of Albert Einstein s theory of relativity was mainly expressed in the early years after its publication on a scientific, pseudoscientific, philosophical, or ideological basis. Reasons for criticism were, for example, alternative… …   Wikipedia

  • Lorentz ether theory — What is now called Lorentz Ether theory ( LET ) has its roots in Hendrik Lorentz s Theory of electrons , which was the final point in the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century …   Wikipedia

  • Timeline of luminiferous aether — The timeline of luminiferous aether begins in the late 19th century with the concept of luminiferous aether ( light bearing aether ), or ether, as a medium for electromagnetic propagation. The aether was assumed to exist for much of the 19th… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”