Grassmann–Cayley algebra


Grassmann–Cayley algebra

Grassmann–Cayley algebra is a form of modelling algebra for projective geometry, based on work by German mathematician Hermann Grassmann on exterior algebra, and, subsequently, by British mathematician Arthur Cayley's work on matrices and linear algebra. It is also known as double algebra.

The technique uses subspaces as basic elements of computation, a formalism which allows the translation of synthetic geometric statements into invariant algebraic statements. This can create a useful framework for the modelling of conics and quadrics, among other forms, and tensor mathematics. It also has a number of applications in robotics, particularly for the kinesthetic analysis of manipulators.

External links

* [http://www.science.uva.nl/ga/faq.html Geometric Algebra FAQ]
* [http://www.inria.fr/rrrt/rr-2665.html Uses of the technique]


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Arthur Cayley — Infobox Scientist name = Arthur Cayley |242px image width = 242px caption = Portrait in London by Barraud Jerrard birth date = birth date|1821|8|16|mf=y birth place = Richmond, Surrey, UK residence = England nationality = British death date =… …   Wikipedia

  • Exterior algebra — In mathematics, the exterior product or wedge product of vectors is an algebraic construction generalizing certain features of the cross product to higher dimensions. Like the cross product, and the scalar triple product, the exterior product of… …   Wikipedia

  • Treatise on Universal Algebra — A Treatise on Universal Algebra with applications (Eine Abhandlung über universale Algebra mit Anwendungen) ist ein Werk des Mathematikers und Philosophen Alfred North Whitehead aus dem Jahr 1898. In diesem Buch unternahm es Whitehead,… …   Deutsch Wikipedia

  • List of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… …   Wikipedia

  • Outline of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… …   Wikipedia

  • Algebraic structure — In algebra, a branch of pure mathematics, an algebraic structure consists of one or more sets closed under one or more operations, satisfying some axioms. Abstract algebra is primarily the study of algebraic structures and their properties. The… …   Wikipedia

  • List of mathematics articles (G) — NOTOC G G₂ G delta space G networks Gδ set G structure G test G127 G2 manifold G2 structure Gabor atom Gabor filter Gabor transform Gabor Wigner transform Gabow s algorithm Gabriel graph Gabriel s Horn Gain graph Gain group Galerkin method… …   Wikipedia

  • Projective geometry — is a non metrical form of geometry, notable for its principle of duality. Projective geometry grew out of the principles of perspective art established during the Renaissance period, and was first systematically developed by Desargues in the 17th …   Wikipedia

  • LinA — Die Lineare Algebra (auch Vektoralgebra) ist ein Teilgebiet der Mathematik, das sich mit Vektorräumen und linearen Abbildungen zwischen diesen beschäftigt. Dies schließt insbesondere auch die Betrachtung von linearen Gleichungssystemen und… …   Deutsch Wikipedia

  • Vektoralgebra — Die Lineare Algebra (auch Vektoralgebra) ist ein Teilgebiet der Mathematik, das sich mit Vektorräumen und linearen Abbildungen zwischen diesen beschäftigt. Dies schließt insbesondere auch die Betrachtung von linearen Gleichungssystemen und… …   Deutsch Wikipedia