Competition (biology)


Competition (biology)
Sea Anemones compete for the territory in tide pools

Competition is an interaction between organisms or species, in which the fitness of one is lowered by the presence of another. Limited supply of at least one resource (such as food, water, and territory) used by both is required.[1] Competition both within and between species is an important topic in ecology, especially community ecology. Competition is one of many interacting biotic and abiotic factors that affect community structure. Competition among members of the same species is known as intraspecific competition, while competition between individuals of different species is known as interspecific competition. Competition is not always straightforward, and can occur in both a direct and indirect fashion.[2].

According to the competitive exclusion principle, species less suited to compete for resources should either adapt or die out. According to evolutionary theory, this competition within and between species for resources plays a critical role in natural selection, however, competition may play less of a role than expansion among larger groups such as families.[2].

Contents

Types of competition

By mechanism

The following terms describe mechanisms by which competition occurs, which can generally be divided into direct and indirect. These mechanisms apply equally to intraspecific and interspecific competition.

Male-male competition in red deer during rut is an example of interference competition within a species.
Interference competition
Occurs directly between individuals via aggression etc. when the individuals interfere with foraging, survival, reproduction of others, or by directly preventing their physical establishment in a portion of the habitat.
Exploitation competition
Occurs indirectly through a common limiting resource which acts as an intermediate. For example, use of resources depletes the amount available to others, or they compete for space. Also known as exploitative competition.
Apparent competition
Occurs indirectly between two species which are both preyed upon by the same predator. For example, species A and species B are both prey of predator C. The increase of species A will cause the decrease of species B because the increase of As would increase the number of predator Cs which in turn will hunt more of species B.

By species

Intraspecific competition

Intraspecific competition occurs when members of the same species vie for the same resources in an ecosystem. For example, two trees growing close together will compete for light above ground, and water and nutrients in the soil. Therefore, getting less resources, they will usually perform less well than if they grew by themselves. Although in this situation it may actually be more useful to think in terms of resource availability than competition. Adaptations to such an environment include growing taller, (where the specific prediction provided by the competition model is that all species in such a situation will grow as tall as possible). or developing a larger root system (where the specific prediction is that all species in the system will develop very deep root systems). The real question is whether these predictions are evidenced by our observations of the natural world...

Interspecific competition


Interspecific competition may occur when individuals of two separate species share a limiting resource in the same area. If the resource cannot support both populations, then lowered fecundity, growth, or survival may result in at least one species. Interspecific competition has the potential to alter populations, communities and the evolution of interacting species.

An example among animals Joe Pa could be the case of cheetahs and lions; since both species feed on similar prey, they are negatively impacted by the presence of the other because they will have less food, however they still persist together, despite the prediction that under competition one will displace the other. In fact, lions sometimes steal prey items killed by cheetahs. Potential competitors can also kill each other, and this phenomenon is called 'intraguild predation'. For example, in southern California coyotes often kill and eat gray foxes and bobcats, all three carnivores sharing the same stable prey (small mammals).[3]

Competition has been observed between individuals, populations and species, but there is little evidence that competition has been the driving force in the evolution of large groups. For example, between reptiles and mammals. Mammals lived beside reptiles for many millions of years of time but were unable to gain a competitive edge until dinosaurs were devastated by the K-T Extinction[2].

Evolutionary strategies

In evolutionary contexts, competition is related to the concept of r/K selection theory, which relates to the selection of traits which promote success in particular environments. The theory originates from work on island biogeography by the ecologists Robert MacArthur and E. O. Wilson.[4]

In r/K selection theory, selective pressures are hypothesised to drive evolution in one of two stereotyped directions: r- or K-selection[5]. These terms, r and K, are derived from standard ecological algebra, as illustrated in the simple Verhulst equation of population dynamics:[6]

\frac{dN}{dt}=rN\left(1 - \frac{N}{K}\right) \qquad \!

where r is the growth rate of the population (N), and K is the carrying capacity of its local environmental setting. Typically, r-selected species exploit empty niches, and produce many offspring, each of whom has a relatively low probability of surviving to adulthood. In contrast, K-selected species are strong competitors in crowded niches, and invest more heavily in much fewer offspring, each of whom has a relatively high probability of surviving to adulthood.

See also

References

  1. ^ Begon, M.; Harper, J. L.; Townsend, C. R. (1996) Ecology: Individuals, populations and communities Blackwell Science.
  2. ^ a b c Sahney, S., Benton, M.J. and Ferry, P.A. (2010). "Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land" (PDF). Biology Letters 6 (4): 544–547. doi:10.1098/rsbl.2009.1024. PMC 2936204. PMID 20106856. http://rsbl.royalsocietypublishing.org/content/6/4/544.full.pdf+html. 
  3. ^ .Fedriani, J. M., T. K. Fuller, R. M. Sauvajot and E. C. York. 2000. Competition and intraguild predation among three sympatric carnivores. Oecologia, 125:258-270.
  4. ^ MacArthur, R. and Wilson, E. O. (1967). The Theory of Island Biogeography, Princeton University Press (2001 reprint), ISBN 0-691-08836-5M.
  5. '^ Pianka, E. R. (1970). On r and K selection. American Naturalist '104, 592-597.
  6. '^ Verhulst, P. F. (1838). Notice sur la loi que la population pursuit dans son accroissement. Corresp. Math. Phys. '10, 113-121.

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Competition (disambiguation) — Competition is any rivalry between two parties. Competition may also refer to: Competition (biology), interaction between living things in which the fitness of one is lowered by the presence of another Competition (economics), the struggle… …   Wikipedia

  • Competition — For other uses, see Competition (disambiguation). A selection of images showing some of the sporting events that are classed as athletics competitions Competition is a contest between individuals, groups, animals, etc. for territory, a niche, or… …   Wikipedia

  • Biology by Team — in German Biologie im Team is the first Austrian biology contest for Upper Secondary Schools.Students at upper secondary schools, who are especially interested in biology, can deepen their knowledge andbroaden their competence in experimental… …   Wikipedia

  • Competition-ChIP — is variant of the Chip Sequencing protocol, used to measure relative binding dynamics of a transcription factor (TF) on DNA. Since TF occupancy measures are thought to be a poor predictor of TF function at a given locus, Competition ChIP is much… …   Wikipedia

  • Compétition spermatique — Dans la nature, l’apparente extravagance des traits arborés par les mâles de certaines espèces, et leur sous jacent impact sur leur survie, inspira Darwin[1] dans le développement de la théorie de la sélection sexuelle. Un siècle plus tard, les… …   Wikipédia en Français

  • biology — /buy ol euh jee/, n. 1. the science of life or living matter in all its forms and phenomena, esp. with reference to origin, growth, reproduction, structure, and behavior. 2. the living organisms of a region: the biology of Pennsylvania. 3. the… …   Universalium

  • Biology (Philosophy of) in the nineteenth century — Philosophy of biology in the nineteenth century Jagdish Hattiangadi THE PHILOSOPHY OF BIOLOGY The emergence of biology as a unified subject Students of history and of biology share a common delight: as they study the details of any subject, they… …   History of philosophy

  • Biology and sexual orientation — Sexual orientation Orientations Asexual · Bisexual · Heterosexual · Homosexual Gender based alternative concepts Androphilia and gynephilia · Human female sexuality  …   Wikipedia

  • Biology of gender — The biology of gender is scientific analysis of the physical basis for behavioural differences between men and women. It is more specific than sexual dimorphism, which covers physical and behavioural differences between males and females of any… …   Wikipedia

  • Topic outline of biology — Biology is the study of living organisms. It is concerned with the characteristics, classification, and behaviors of organisms, how species come into existence, and the interactions they have with each other and with the environment. Biology… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.