 Counterfactual definiteness

In some interpretations of quantum mechanics, counterfactual definiteness (CFD) is the ability to speak with meaning of the definiteness of the results of measurements that have not been performed (i.e. the ability to assume the existence of objects, and properties of objects, even when they have not been measured). A macroscopic example of CFD would be the assumption without measurement that a ball, thrown into the air, will return to the Earth due to gravity. CFD says that if a phenomenon (the return of an airborne ball to the Earth) has been reproducibly measured in the past, one can safely assume its presence in the future without having to refer to additional measurement events for proof of its existence. More rigorously, an interpretation of quantum mechanics satisfies CFD if it includes in the statistical population of measurement results, those measurements which are counterfactual by virtue of their being excluded by the quantum mechanical prohibition on simultaneous measurement of certain pairs of properties.^{[1]}
For example, the Heisenberg uncertainty principle states that you cannot simultaneously know both the position and momentum of a particle. Suppose one measures the position: this act destroys any information about its momentum. Is it then possible to talk about the outcome one would have obtained if one had measured its momentum instead of its position? In terms of mathematical formalism, is such a counterfactual momentum measurement to be included, together with the factual position measurement, in the statistical population of possible outcomes describing the particle? If the position was found to be r_{0} then in an interpretation satisfying CFD, the statistical population describing position and momentum would contain all pairs (r_{0},p) for every possible momentum value p, whereas an interpretation that rejects counterfactual values completely would only have the pair (r_{0},⊥) where ⊥ denotes an undefined value. To use a macroscopic analogy, an interpretation which rejects CFD views measuring the position as akin to asking where in a room a person is standing, while measuring the momentum is akin to asking if the person's lap is empty or has something on it. If the person has been made to stand then that person has no lap and neither of the statements "the person's lap is empty" and "there is something on the person's lap" is true. Any statistical calculation based on values where the person is standing at some place in the room and simultaneously has a lap as if sitting would be meaningless.
Counterfactual definiteness is a basic assumption, which, together with locality, leads to Bell inequalities. In their derivation it is explicitly assumed that every possible measurement, even if not performed, can be included in statistical calculations. The calculation involves averaging over sets of outcomes which cannot all be simultaneously factual  if some are assumed to be factual outcomes of an experiment others have to be assumed counterfactual. (Which ones are designated as factual is not important: the point is that they cannot all be designated factual simultaneously.) Bell's Theorem actually proves that every type of quantum theory must necessarily violate either locality or CFD.^{[2]}^{[3]}
CFD is present in any interpretation of quantum mechanics that regards quantum mechanical measurements to be objective descriptions of a system's state independent of the measuring process. It is not present in interpretations such as the Copenhagen interpretation and its modern refinements, which regard the measured values as resulting from both the system being measured and the measuring apparatus, and regard the system as being indefinable in the absence of an interaction between the two. To give a macroscopic analogy using the idea of a laptop screen: The former type of interpretation sees quantum mechanical measurements as akin to measuring say the diagonal length of a laptop screen  this quantity is well defined regardless of whether one holds a ruler across the screen or not. The latter type of interpretation that rejects CFD sees quantum mechanical measurements as akin to asking how much your finger is warping the screen at the point where it is poking it  a question which is meaningless unless your finger is actually poking the screen.
See also
 Determinism
 Quantum indeterminacy
 Elitzur–Vaidman bombtester
 Renninger negativeresult experiment
References
 ^ Henry P Stapp Smatrix interpretation of quantumtheory Physical Review D Vol 3 #6 1303 (1971)
 ^ David Z Albert, Bohm's Alternative to Quantum Mechanics Scientific American (May 1994)
 ^ John G. Cramer The transactional interpretation of quantum mechanics Reviews of Modern Physics Vol 58, #3 pp.647687 (1986)
External links
Categories: Quantum measurement
Wikimedia Foundation. 2010.
Look at other dictionaries:
Counterfactual — may refer to: Counterfactual conditional, a grammatical form (which also relates to philosophy and logic) Counterfactual subjunctive, grammatical forms which in English are known as the past and pluperfect forms of the subjunctive mood… … Wikipedia
Definiteness (disambiguation) — Definiteness is a feature of noun phrases in grammatical theory. Donna s favourite word Definiteness may also refer to: Counterfactual definiteness, a concept in quantum mechanics Positive definiteness (disambiguation), a concept in mathematics… … Wikipedia
Naïve realism — argues we perceive the world directly Naïve realism, also known as direct realism or common sense realism, is a philosophy of mind rooted in a common sense theory of perception that claims that the senses provide us with direct awareness of the… … Wikipedia
Наивный реализм — Наивный реализм эпистемологическая позиция в философии и в обыденном сознании, согласно которой реально всё, что нормальный человек воспринимает в нормальных условиях и описывает общепринятым и соответствующим фактам языком[1]. С точки… … Википедия
Principle of locality — In physics, the principle of locality is that distant objects cannot have direct influence on one another: an object is influenced directly only by its immediate surroundings. This was stated as follows by Albert Einstein in his article Quantum… … Wikipedia
ElitzurVaidman bombtester — In Physics, the Elitzur Vaidman bomb testing problem is a thought experiment in quantum mechanics, first proposed by Avshalom Elitzur and Lev Vaidman in 1993. An actual bomb tester was constructed and successfully tested by Anton Zeilinger, Paul… … Wikipedia
Bell's theorem — is a theorem that shows that the predictions of quantum mechanics (QM) are not intuitive, and touches upon fundamental philosophical issues that relate to modern physics. It is the most famous legacy of the late physicist John S. Bell. Bell s… … Wikipedia
Принцип локальности — В физике принцип локальности/близкодействия утверждает, что на объект влияет только его непосредственное окружение. Квантовая механика предсказывает посредством неравенств Белла прямое нарушение этого принципа[1]. Эксперименты показали, что… … Википедия
Manyworlds interpretation — The quantum mechanical Schrödinger s cat paradox according to the many worlds interpretation. In this interpretation every event is a branch point; the cat is both alive and dead, even before the box is opened, but the alive and dead cats are in… … Wikipedia
Bohm interpretation — The Bohm interpretation of quantum mechanics, sometimes called Bohmian mechanics, the ontological interpretation, or the causal interpretation, is an interpretation postulated by David Bohm in 1952 as an extension of Louis de Broglie s pilot wave … Wikipedia