Large cardinal property

Large cardinal property

In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than aleph zero, bigger than the cardinality of the continuum, etc.). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". [cite book|last=Bell|first=J.L.|title=Boolean-Valued Models and Independence Proofs in Set Theory|pages=viii|publisher=Oxford University Press|year=1985|id=ISBN 0198532415]

There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct philosophical schools (see Motivations and epistemic status below).

A large cardinal axiom is an axiom stating that there exists a cardinal (or perhaps many of them) with some specified large cardinal property.

There is no generally agreed precise definition of what a large cardinal property is, though essentially everyone agrees that those listed at List of large cardinal properties are large cardinal properties.

Partial definition

A necessary condition for a property of cardinal numbers to be a "large cardinal property" is that the existence of such a cardinal is not known to be inconsistent with ZFC and it has been proven that if ZFC is consistent, then ZFC + "no such cardinal exists" is consistent.

Hierarchy of consistency strength

A remarkable observation about large cardinal axioms is that they appear to occur in strict linear order by consistency strength. That is, no exception is known to the following: Given two large cardinal axioms A1 and A2, one of three (mutually exclusive) things happens:
#ZFC proves "ZFC+A1 is consistent if and only if ZFC+A2 is consistent,"
#ZFC+A1 proves that ZFC+A2 is consistent,
#ZFC+A2 proves that ZFC+A1 is consistent.

In case 1 we say that A1 and A2 are equiconsistent. In case 2, we say that A1 is consistency-wise stronger than A2 (vice versa for case 3). If A2 is stronger than A1, then ZFC+A1 cannot prove A2 is consistent, even with the additional hypothesis that ZFC+A1 is itself consistent (provided of course that it really is). This follows from Gödel's second incompleteness theorem.

The observation that large cardinal axioms are linearly ordered by consistency strength is just that, an observation, not a theorem. (Without an accepted definition of large cardinal property, it is not subject to proof in the ordinary sense). Also, it is not known in every case which of the three cases holds. Saharon Shelah has asked, " [i] s there some theorem explaining this, or is our vision just more uniform than we realize?". Woodin, however, deduces this from the Ω-conjecture, the main unsolved problem of his Ω-logic.

It should also be noted that the order of consistency strength is not necessarily the same as the order of the size of the smallest witness to a large cardinal axiom. For example, the existence of a huge cardinal is much stronger, in terms of consistency strength, than the existence of a supercompact cardinal, but assuming both exist, the first huge is smaller than the first supercompact.

Motivations and epistemic status

Large cardinals are understood in the context of the von Neumann universe V, which is built up by transfinitely iterating the powerset operation, which collects together all subsets of a given set. Typically, models in which large cardinal axioms "fail" can be seen in some natural way as submodels of those in which the axioms hold. For example, if there is an inaccessible cardinal, then "cutting the universe off" at the height of the first such cardinal yields a universe in which there is no inaccessible cardinal. Or if there is a measurable cardinal, then iterating the "definable" powerset operation rather than the full one yields Gödel's constructible universe, L, which does not satisfy the statement "there is a measurable cardinal" (even though it contains the measurable cardinal as an ordinal).

Thus, from a certain point of view held by many set theorists (especially those inspired by the tradition of the Cabal), large cardinal axioms "say" that we are considering all the sets we're "supposed" to be considering, whereas their negations are "restrictive" and say that we're considering only some of those sets. Moreover the consequences of large cardinal axioms seem to fall into natural patterns (see Maddy, "Believing the Axioms, II"). For these reasons, such set theorists tend to consider large cardinal axioms to have a preferred status among extensions of ZFC, one not shared by axioms of less clear motivation (such as Martin's axiom) or others that they consider intuitively unlikely (such as V = L). The hardcore realists in this group would state, more simply, that large cardinal axioms are "true".

This point of view is by no means universal among set theorists. Some formalists would assert that standard set theory is by definition the study of the consequences of ZFC, and while they might not be opposed in principle to studying the consequences of other systems, they see no reason to single out large cardinals as preferred. There are also realists who deny that ontological maximalism is a proper motivation, and even believe that large cardinal axioms are false. And finally, there are some who deny that the negations of large cardinal axioms "are" restrictive, pointing out that (for example) there can be a transitive submodel of L that believes there exists a measurable cardinal, even though L itself does not satisfy that proposition.

Notes

References

*
*
*
*
*
*
*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Homogeneous (large cardinal property) — In the context of a large cardinal property, a subset, S , of D is homogeneous for a function f means that for some natural number n , D n is the domain of f and for some element r of the range of f , every member of S n is mapped to r . That is …   Wikipedia

  • List of large cardinal properties — This page is a list of some types of cardinals; it is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property. Existence of a cardinal number κ of a given type implies the… …   Wikipedia

  • Large countable ordinal — In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of… …   Wikipedia

  • Mahlo cardinal — In mathematics, a Mahlo cardinal is a certain kind of large cardinal number. Mahlo cardinals were first described by Paul Mahlo (1911, 1912, 1913). As with all large cardinals, none of these varieties of Mahlo cardinals can be proved to… …   Wikipedia

  • Measurable cardinal — In mathematics, a measurable cardinal is a certain kind of large cardinal number. Contents 1 Measurable 2 Real valued measurable 3 See also 4 References …   Wikipedia

  • Strongly compact cardinal — In mathematical set theory, a strongly compact cardinal is a certain kind of large cardinal number; their existence can neither be proven nor disproven from the standard axioms of set theory.A cardinal kappa; is strongly compact if and only if… …   Wikipedia

  • Weakly compact cardinal — In mathematics, a weakly compact cardinal is a certain kind of cardinal number introduced by harvtxt|Erdös|Tarski|1961; weakly compact cardinals are large cardinals, meaning that their existence can neither be proven nor disproven from the… …   Wikipedia

  • Reinhardt cardinal — In set theory, a branch of mathematics, a Reinhardt cardinal is a large cardinal kappa;, suggested by harvs|txt=yes|last=Reinhardt|year=1967|year2=1974, that is the critical point of a non trivial elementary embedding j of V into itself.A minor… …   Wikipedia

  • Almost ineffable cardinal — In mathematics, an almost ineffable cardinal is a certain kind of large cardinal number.Formally, a cardinal number κ is almost ineffable if and only if for every f: κ → P(κ) with the property that f(δ) is a subset of δ for all ordinals δ, there… …   Wikipedia

  • Perfect set property — In descriptive set theory, a subset of a Polish space has the perfect set property if it is either countable or has a nonempty perfect subset.As nonempty perfect sets in a Polish space always have the cardinality of the continuum, a set with the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”