Beam parameter product


Beam parameter product

In laser science, the beam parameter product (BPP) is the product of a laser beam's divergence angle (half-angle) and the radius of the beam at its narrowest point (the beam waist).cite web|url=http://www.rp-photonics.com/beam_parameter_product.html |title=Beam parameter product |accessdate=2006-09-22 |work=Encyclopedia of Laser Physics and Technology ] The BPP quantifies the quality of a laser beam, and how well it can be focused to a small spot.

A Gaussian beam has the lowest possible BPP, lambda/pi, where lambda is the wavelength of the light. The ratio of the BPP of an actual beam to that of an ideal Gaussian beam at the same wavelength is denoted ("M squared"). This parameter is a wavelength-independent measure of beam quality.

There are several ways to define the width of a beam. When measuring the beam parameter product and M², one uses the D4σ or "second moment" width of the beam to determine both the radius of the beam's waist and the divergence in the far field. Other definitions of beam quality have been used in the past, but the one using second moment widths is most commonly accepted. [ A. E. Siegman, " [http://www.stanford.edu/~siegman/beam_quality_tutorial_osa.pdf How to (Maybe) Measure Laser Beam Quality] ," Tutorial presentation at the Optical Society of America Annual Meeting, Long Beach, California, October 1997.]

The quality of a beam is important for many applications. In fiber-optic communications beams with an M2 close to 1 are required for coupling to single-mode optical fiber. Laser machine shops care a lot about the M2 parameter of their lasers because the beams will focus to an area that is M2 times larger than that of a Gaussian beam with the same wavelength and D4σ waist width; in other words, the fluence scales as 1/M2. The general rule of thumb is that M2 increases as the laser power increases. It is difficult to obtain excellent beam quality and high average power (100 W to kWs) due to thermal lensing in the laser gain medium.

Measurement of the BPP

The BPP can be easily measured by placing an array detector or scanning-slit profiler at multiple positions within the beam after focussing it with a lens of high optical quality and known focal length. To properly obtain the BPP and M² the following steps must be followed:ISO 11146-1:2005(E), "Lasers and laser-related equipment — Test methods for laser beam widths, divergence angles and beam propagation ratios — Part 1: Stigmatic and simple astigmatic beams."]
# Measure the D4σ widths at 5 axial positions near the beam waist (the location where the beam is narrowest).
# Measure the D4σ widths at 5 axial positions at least one Rayleigh length away from the waist.
# Fit the 10 measured data points to sigma^2(z) = sigma_0^2 + M^4 left(frac{lambda}{pisigma_0} ight)^2(z-z_0)^2 , A. E. Siegman, " [http://www.stanford.edu/~siegman/beam_quality_tutorial_osa.pdf How to (Maybe) Measure Laser Beam Quality] ," Tutorial presentation at the Optical Society of America Annual MeetingLong Beach, California, October 1997, p.9. (Note that there is a typo in equation on page 3. Correct form comes from equations on page 9.)] where sigma^2(z) is the second moment of the distribution in the x or y direction (see section on D4σ beam width), and z_0 is the location of the beam waist with second moment width of sigma_0 . Fitting the 10 data points yields M2, z_0 , and sigma_0 . Siegman showed that all beam profiles — Gaussian, flat top, TEMxy, or any shape — must follow the equation above provided that the beam radius uses the D4σ definition of the beam width. Using other definitions of beam width does not work.

In principle, one could use a single measurement at the waist to obtain the waist diameter, a single measurement in the far field to obtain the divergence, and then use these to calculate the BPP. The procedure above gives a more accurate result in practice, however.

References


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Gaussian beam — In optics, a Gaussian beam is a beam of electromagnetic radiation whose transverse electric field and intensity (irradiance) distributions are well approximated by Gaussian functions. Many lasers emit beams that approximate a Gaussian profile, in …   Wikipedia

  • Laser beam profiler — A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers ultraviolet, visible, infrared, continuous… …   Wikipedia

  • Electron beam lithography — (often abbreviated as e beam lithography) is the practice of scanning a beam of electrons in a patterned fashion across a surface covered with a film (called the resist),cite book |last= McCord |first=M. A. |coauthors=M. J. Rooks |title=… …   Wikipedia

  • Rayleigh length — Gaussian beam width w(z) as a function of the axial distance z. w0: beam waist; b: confocal parameter; zR: Rayleigh length; Θ: total angular spread …   Wikipedia

  • BPP (disambiguation) — The acronym BPP can stand for: *Biophysical profile, a prenatal ultrasound evaluation of fetal wellbeing *Bits per pixel, also known as color depth *BPP, a class of decision problems in complexity theory *BPP Professional Education , a… …   Wikipedia

  • Laser acronyms — Here, is a list of acronyms used in laser physics, applications and technology.A*AOM – acousto optic modulator *APD – avalanche photodiode *APM – additive pulse mode locking *ASE – amplified spontaneous emission *AWG – arrayed waveguide… …   Wikipedia

  • BPP — Die Abkürzung BPP steht für: Bayerische Politische Polizei Beam Parameter Product, ein Begriff aus der Optik Bin Packing Problem, ein NP schweres kombinatorisches Optimierungsproblem Black Panther Party BPP (Komplexitätsklasse), ein Begriff aus… …   Deutsch Wikipedia

  • Strahlparameterprodukt — Das Strahlparameterprodukt (SPP) ist eine physikalische Kenngröße, mit der sich die Strahlqualität und mithin die Fokussierbarkeit eines Laserstrahls beschreiben lässt. Die englische Abkürzung für SPP lautet BPP (engl. beam parameter product).… …   Deutsch Wikipedia

  • radiation — radiational, adj. /ray dee ay sheuhn/, n. 1. Physics. a. the process in which energy is emitted as particles or waves. b. the complete process in which energy is emitted by one body, transmitted through an intervening medium or space, and… …   Universalium

  • Mathematics and Physical Sciences — ▪ 2003 Introduction Mathematics       Mathematics in 2002 was marked by two discoveries in number theory. The first may have practical implications; the second satisfied a 150 year old curiosity.       Computer scientist Manindra Agrawal of the… …   Universalium