Color calibration


Color calibration

The aim of color calibration is to measure and/or adjust the color response of a device (input or output) to a known state. In ICC terms this is the basis for a additional color characterization of the device and later profiling[1]. In non ICC workflows calibration refers sometimes to establishing a known relationship to a standard color space.[2] in one go. The device that is to be calibrated is sometimes known as calibration source; the color space that serves as a standard is sometimes known as calibration target.[citation needed]. Color calibration is a requirement for all devices taking an active part of a color managed workflow.

Color calibration is used by many industries, such as TV production, gaming, photography, engineering, chemistry, medical and more. In order to calibrate a display correctly you need a colorimeter and software to correctly calibrate your monitor or television. There are many different solutions for different types of displays. Due to the differences in technology, one meter may or may not work with another type of screen( i.e. may support LCD, but not CRT). Calibration solutions run from $299-$3000, depending on your specific needs. Most consumers will spend between $300-$500 for a color calibration solution.

Contents

Information flow and output distortion

Input data can come from device sources like digital cameras, image scanners or any other measuring devices. Those inputs can be either monochrome (in which case only the response curve needs to be calibrated, though in a few select cases one must also specify the color or spectral power distribution that that single channel corresponds to) or specified in multidimensional color - most commonly in the three channel RGB model. Input data is in most cases calibrated against a profile connection space (PCS).[3]

One of the most important factors to consider when dealing with color calibration is having a valid source. If your color measuring source does not match the displays capabilities, the calibration will be ineffective and give false readings.

The main distorting factors on the input stage stem from the amplitude nonlinearity of the channel response(s), and in the case of a multidimensional datastream the non-ideal wavelength responses of the individual color separation filters (most commonly a color filter array (CFA)) in combination with the spectral power distribution of the scene illumination.

After this the data is often circulated in the system translated into a working space RGB for viewing and editing.

In the output stage when exporting to a viewing device such as a CRT or LCD screen or a digital projector, the computer sends a signal to the computer's graphic card in the form RGB [Red,Green,Blue]. The dataset [255,0,0] signals only a device instruction, not a specific color. This instruction [R,G,B]=[255,0,0] then causes the connected display to show Red at the maximum achievable brightness [255], while the Green and Blue components of the display remain dark [0]. The resultant color being displayed, however, depends on two main factors:

  • the phosphors or another system actually producing a light that falls inside the red spectrum;
  • the overall brightness of the color resulting in the desired color perception: an extremely bright light source will always be seen as white, irrespective of spectral composition.

Hence every output device will have its unique color signature, displaying a certain color according to manufacturing tolerances and material deterioration through use and age. If the output device is a printer, additional distorting factors are the qualities of a particular batch of paper and ink.

The conductive qualities and standards-compliance of connecting cables, circuitry and equipment can also alter the electrical signal at any stage in the signal flow. (A partially inserted VGA connector can result in a monochrome display, for example, as some pins are not connected.)

Color perception

Color perception is subject to ambient light levels, and the ambient white point; for example, a red object looks black in blue light. It is therefore not possible to achieve calibration that will make a device look correct and consistent in all capture or viewing conditions. The computer display and calibration target will have to be considered in controlled, predefined lighting conditions.

Commercial calibration tools

There are several custom monitor calibration software available on the market. Depending on your need, you may want software that can calibrate monitors, tvs, or both. Some of more popular software products are:

Spectracal's CalMAN Display Calibration Software

Spectracal's CalPC Monitor Calibration Software

Display Calibrations ChromaPure Video Calibration Software

Datacolor's Spyder3 Studio Spyder Calibration Software

X-Rite i1Match Software i1 Meter Calibration Software

Quato's iColor Display Display Calibration Software

Commercial producers of consumer-level colorimeters include X-Rite, SpectraCal, and Datacolor.

Consumer-Level Colorimeters

X-Rite Chroma 5 The X-Rite Chroma 5 is a quick-reading colorimeter with greater accuracy and better stability than other contact colorimeters. Built-in temperature compensation eliminates the need for periodic dark calibration.

X-Rite ColorMunki The ColorMunki is the compact relative to the popular EyeOne Pro. It offers the power of a spectroradiometer in a compact innovatively designed package.

X-Rite EyeOne Pro The EyeOne Pro is manufactured in Switzerland and calibrated at the factory by X-Rite against a reference system traceable to a National Institute of Standards and Technology (NIST) source. Each ships with a certificate of performance which warrants the accuracy of the meter for a period of a year.

X-Rite EyeOne Pro Enhanced The EyeOne Pro is manufactured in Switzerland and calibrated at the factory by X-Rite against a reference system traceable to a National Institute of Standards and Technology (NIST) source. Each ships with a certificate of performance which warrants the accuracy of the meter for a period of a year. Modified and available from Spectracal only.

X-Rite EyeOne D2 Eye-One Display 2 is a professional monitor-calibration tool that lets you achieve accurate color on all types of displays--including LCDs, CRTs, and laptops. With its advanced controls, you can achieve the best possible match across multiple monitors, optimize gray balance for more neutral and better-defined grays, and even check ambient light to determine optimal room lighting for color-critical work. Eye-One Display 2 saves time and rework so your creative inspirations can be more easily realized. Designed to meet the needs of creative professionals and discerning digital-imaging enthusiasts, Eye-One Display LT ensures reliable and accurate color onscreen. With the easy-to-use software wizard, you'll achieve consistent, predictable color on all types of monitors--LCD, CRT, and laptops--with a few simple clicks

X-Rite Hubble The X-Rite Hubble Non-Contact Tristimulus Colorimeter measures and calibrates flat panels, projectors, and CRTs more accurately and conveniently. The Hubble’s low light accuracy, high measurement speed, and low cost make it the perfect color calibrator for professionals.

M2 Meter Modified custom meter made only by Spectracal. Extremely accurate M2 colorimeter individually optimized in the SpectraCal lab to provide the best results for calibrating PC monitor technologies. Comes Bundled with CalPC.

Colorvision Spyder 2 The ColorVision Spyder2 features the all new Spyder2 colorimeter and monitor calibration for advanced amateurs and prosumers to create precise ICC display profiles for your CRT, LCD or notebook display. Third generation colorimeter comes equipped with new state-of-the-art optical design and photo-centric user interface providing accurate, reliable and consistent color.

Calibration techniques and procedures

The most common form of calibration aims at adjusting cameras, scanners, monitors and printers for photographic reproduction. The aim is that a printed copy of a photograph appear identical in saturation and dynamic range to the original or a source file on a computer display. This means that three independent calibrations need to be performed:

  • The camera or scanner needs a device-specific calibration to represent the original's estimated colors in an unambiguous way.
  • The computer display needs a device-specific calibration to reproduce the colors of the image color space.
  • The printer needs a device-specific calibration to reproduce the colors of the image color space.

These goals can either be realized via direct value translation from source to target, or by using a common known reference color space as middle ground. In the most commonly used color profile system, ICC, this is known as the PCS or "Profile Connection Space".

Camera

The camera calibration needs a known calibration target to be photographed and the resulting output from the camera to be converted to color values. A correction profile can then be built using the difference between the camera result values and the known reference values. When two or more cameras need to be calibrated relatively to each other, to reproduce the same color values, the technique of color mapping can be used.

Scanner

An IT8.7 Target by LaserSoft Imaging

For creating a scanner profile it needs a target source, such as an IT8-target, an original with many small color fields, which was measured by the developer with a photometer. The scanner reads this original and compares the scanned color values with the target's reference values. Taking the differences of these values into account an ICC profile is created, which relates the device specific color space (RGB color space) to a device independent color space (L*a*b color space). Thus, the scanner is able to output with color fidelity to what it reads.

Display

For calibrating the monitor a colorimeter is attached flat to the display's surface, shielded from all ambient light. The calibration software sends a series of color signals to the display and compares the values that were actually sent against the readings from the calibration device. This establishes the current offsets in color display. Depending on the calibration software and type of monitor used, the software either creates a correction matrix (i.e. an ICC profile) for color values before being sent to the display, or gives instructions for altering the display's brightness/contrast and RGB values through the OSD. This tunes the display to reproduce fairly accurately the in-gamut part of a desired color space. The calibration target for this kind of calibration is that of print stock paper illuminated by D65 light at 120 cd/m2.

Printer

The ICC profile for a printer is created by comparing a test print result using a photometer with the original reference file. The testchart contains known CMYK colors, whose offsets to their actual L*a*b colors scanned by the photometer are resulting in an ICC profile. Another possibility to ICC profile a printer is to use a calibrated scanner as the measuring device for the printed CMYK testchart instead of a photometer. A calibration profile is necessary for each printer/paper/ink combination.

See also

References

  1. ^ Graeme Gill. Calibration vs. Characterization. Graeme Gill. http://www.argyllcms.com/doc/calvschar.html. 
  2. ^ Hsien-Che Lee (2005). Introduction to color imaging science. Cambridge University Press. ISBN 052184388X. http://books.google.com/books?id=CzAbJrLin_AC&pg=PA388&dq=%22color+calibration%22+camera+monitor&lr=&as_brr=3&ei=v7QTSL3-OI2qtgPI54CgCA&sig=5_7RELfTow9Pm98V6TXQ__KPlKo#PPA388,M1. 
  3. ^ Ann L. McCarthy. Color Imaging Workflow Primitives. International Color Consortium. http://www.color.org/primitives.pdf. 

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Calibration — is the process of establishing the relationship between a measuring device and the units of measure. This is done by comparing a device or the output of an instrument to a standard having known measurement characteristics. For example the length… …   Wikipedia

  • Color mapping — example Source image Reference image …   Wikipedia

  • Color–color diagram — In astronomy, color–color diagrams are a means of comparing the apparent magnitudes of stars at different wavelengths. Astronomers typically observe at narrow bands around certain wavelengths, and objects observed will have different brightnesses …   Wikipedia

  • Color management — In digital imaging systems, color management is the controlled conversion between the color representations of various devices, such as image scanners, digital cameras, monitors, TV screens, film printers, computer printers, offset presses, and… …   Wikipedia

  • Color chart — An IT8.7 Target by LaserSoft Imaging In color related fields, a color chart is a flat, physical object colored with an arrangement of standardized color samples, used for color comparisons and measurements such as checking the color reproduction… …   Wikipedia

  • Color printing — Color separation redirects here. For other uses, see Chroma key. Color printing or Colour printing is the reproduction of an image or text in color (as opposed to simpler black and white or monochrome printing). Any natural scene or color… …   Wikipedia

  • Color Graphics Adapter — The 640×200 2 color mode with its default foreground color Arachne Internet suite. The Color Graphics Adapter (CGA), originally also called the Color/Graphics Adapter or IBM Color/Graphics Monitor Adapter,[1] introduced in 1981, was IBM s first… …   Wikipedia

  • Color temperature — The CIE 1931 x,y chromaticity space, also showing the chromaticities of black body light sources of various temperatures (Planckian locus), and lines of constant correlated color temperature. Color temperature is a characteristic of visible light …   Wikipedia

  • Linux color management — has the same goal as the color management systems (CMS) for other operating systems: to achieve the best possible color reproduction throughout an imaging workflow from its source (camera, video, scanner…), onto imaging software (CinePaint,… …   Wikipedia

  • RGB color model — RGB redirects here. For other uses, see RGB (disambiguation). A representation of additive color mixing. Projection of primary color lights on a screen shows secondary colors where two overlap; the combination of all three of red, green, and blue …   Wikipedia