Converting (metallurgy)

Converting (metallurgy)

Converting is a term used to describe a number of metallurgical smelting processes. The most commercially important use of the term is in the treatment of molten metal sulfides to produce crude metal and slag, as in the case of copper and nickel converting. Another, now uncommon, use of the term referred to batch treatment of pig iron to produce steel by the Bessemer process. The vessel used was called the Bessemer converter.

Converting in copper metallurgy

A mixture of copper and iron sulfides referred to as matte is treated in converters to oxidize iron in the first stage, and oxidize copper in the second stage. In the first stage oxygen enriched air is blown through the tuyeres to partially convert metal sulfides to oxides:

FeS + O2 → FeO + SO2
CuS + O2 → CuO + SO2

Since iron has greater affinity to oxygen, the produced copper oxide reacts with the remaining iron sulfide:

CuO + FeS → CuS + FeO

The bulk of the copper oxide is turned back into the form of sulfide. In order to separate the obtained iron oxide, flux (mainly silica) is added into the converter. Silica reacts with iron oxide to produce a light slag phase, which is poured off through the hood when the converter is tilted around the rotation axis:

2 FeO + SiO2 → Fe2SiO4 (sometimes denoted as 2FeO•SiO2, fayalite)

After the first portion of slag is poured off the converter, a new portion of matte is added, and the converting operation is repeated many times until the converter is filled with the purified copper sulfide. The converter slag is usually recycled to the smelting stage due to the high content of copper in this by-product. Converter gas contains more than 10% of sulfur dioxide, which is usually captured for the production of sulfuric acid.

The second stage of converting is aimed at oxidizing the copper sulfide phase (purified in the first stage), and produces blister copper. The following reaction takes place in the converter:

CuS + O2 → Cu + SO2

Copper content in the obtained blister copper is typically more than 95%. Blister copper is the final product of converting.

Equipment

PierceSmith.gif

The converting process occurs in a converter. Two kinds of converters are widely used: horizontal and vertical.

Horizontal converters of the Pierce-Smith type prevail in the metallurgy of non ferrous metals. Such a converter is a horizontal barrel lined with refractory material inside. A hood for the purpose of the loading/unloading operations is located on the upper side of the converter. Two belts of tuyeres come along the axis on either sides of the converter.

Molten sulfide material, referred to as matte, is poured through the hood into the converter during the operation of loading. Air is distributed to tuyeres from the two tuyere collectors which are located on opposite sides of the converter. Collector pipes vary in diameter with distance from the connection to air supplying trunk; this is to provide equal pressure of air in each tuyere.

See also


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • metallurgy — metallurgic, metallurgical, adj. metallurgically, adv. metallurgist /met l err jist/ or, esp. Brit., /meuh tal euhr jist/, n. /met l err jee/ or, esp. Brit., /meuh tal euhr jee/, n. 1. the technique or science of working or heating metals so as… …   Universalium

  • Metallurgy during the Copper Age in Europe — The Copper Age, also called the Eneolithic or the Chalcolithic Age, has been traditionally understood as a transitional period between the Neolithic and the Bronze Age, in which a gradual introduction of the metal (native copper) took place,… …   Wikipedia

  • History of ferrous metallurgy — Iron (material) redirects here. For the chemical element Fe, see Iron. Bloomery smelting during the Middle Ages. The history of ferrous metallurgy began far back in prehistory. The earliest surviving iron artifacts, from the 5th millennium BC in… …   Wikipedia

  • Matte (metallurgy) — For other uses, see Matte (disambiguation). Matte is a term used in the field of pyrometallurgy given to the molten metal sulfide phases typically formed during smelting of copper, nickel, and other base metals. Typically, a matte is the phase in …   Wikipedia

  • steel — steellike, adj. /steel/, n. 1. any of various modified forms of iron, artificially produced, having a carbon content less than that of pig iron and more than that of wrought iron, and having qualities of hardness, elasticity, and strength varying …   Universalium

  • Europe, history of — Introduction       history of European peoples and cultures from prehistoric times to the present. Europe is a more ambiguous term than most geographic expressions. Its etymology is doubtful, as is the physical extent of the area it designates.… …   Universalium

  • Business and Industry Review — ▪ 1999 Introduction Overview        Annual Average Rates of Growth of Manufacturing Output, 1980 97, Table Pattern of Output, 1994 97, Table Index Numbers of Production, Employment, and Productivity in Manufacturing Industries, Table (For Annual… …   Universalium

  • technology, history of — Introduction       the development over time of systematic techniques for making and doing things. The term technology, a combination of the Greek technē, “art, craft,” with logos, “word, speech,” meant in Greece a discourse on the arts, both… …   Universalium

  • materials science — the study of the characteristics and uses of various materials, as glass, plastics, and metals. [1960 65] * * * Study of the properties of solid materials and how those properties are determined by the material s composition and structure, both… …   Universalium

  • nickel processing — Introduction       preparation of the metal for use in various products.       Although it is best known for its use in coinage, nickel (Ni) has become much more important for its many industrial applications, which owe their importance to a… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”