Technology acceptance model

Technology acceptance model

The Technology Acceptance Model (TAM) is an information systems theory that models how users come to accept and use a technology. The model suggests that when users are presented with a new technology, a number of factors influence their decision about how and when they will use it, notably:
* Perceived usefulness (PU) - This was defined by Fred Davis as "the degree to which a person believes that using a particular system would enhance his or her job performance".
* Perceived ease-of-use (PEOU) - Davis defined this as "the degree to which a person believes that using a particular system would be free from effort" (Davis, 1989).


TAM is one of the most influential extensions of Ajzen and Fishbein’s theory of reasoned action (TRA) in the literature. It was developed by Fred Davis and Richard Bagozzi (Bagozzi et al., 1992; Davis et al., 1989). TAM replaces many of TRA’s attitude measures with the two technology acceptance measures— "ease of use", and "usefulness". TRA and TAM, both of which have strong behavioural elements, assume that when someone forms an intention to act, that they will be free to act without limitation. In the real world there will be many constraints, such as limit the freedom to act (Bagozzi et al., 1992).

Bagozzi, Davis and Warshaw say:

:"Because new technologies such as personal computers are complex and an element of uncertainty exists in the minds of decision makers with respect to the successful adoption of them, people form attitudes and intentions toward trying to learn to use the new technology prior to initiating efforts directed at using. Attitudes towards usage and intentions to use may be ill-formed or lacking in conviction or else may occur only after preliminary strivings to learn to use the technology evolve. Thus, actual usage may not be a direct or immediate consequence of such attitudes and intentions." (Bagozzi et al., 1992)

Earlier research on the diffusion of innovations also suggested a prominent role for perceived ease of use. Tornatzky and Klein (1982) analysed the adoption, finding that compatibility, relative advantage, and complexity had the most significant relationships with adoption across a broad range of innovation types. Eason studied perceived usefulness in terms of a fit between systems, tasks and job profiles, using the terms "task fit" to describe the metric (quoted in Stewart, 1986)


Several researchers have replicated Davis’s original study (Davis, 1989) to provide empirical evidence on the relationships that exist between usefulness, ease of use and system use (Adams, Nelson & Todd, 1992; Davis et al., 1989; Hendrickson, Massey & Cronan, 1993; Segars & Grover, 1993; Subramanian, 1994; Szajna, 1994). Much attention has focused on testing the robustness and validity of the questionnaire instrument used by Davis. Adams et al (1992) replicated the work of Davis (1989) to demonstrate the validity and reliability of his instrument and his measurement scales. They also extended it to different settings and, using two different samples, they demonstrated the internal consistency and replication reliability of the two scales. Hendrickson et al (1993) found high reliability and good test-retest reliability. Szajna (1994) found that the instrument had predictive validity for intent to use, self-reported usage and attitude toward use. The sum of this research has confirmed the validity of the Davis instrument, and to support its use with different populations of users and different software choices.

Segars and Grover (1993) re-examined Adams "et al"’s (1992) replication of the Davis work. They were critical of the measurement model used, and postulated a different model based on three constructs: usefulness, effectiveness, and ease-of-use. These findings do not yet seem to have been replicated.

Mark Keil and his colleagues have developed (or, perhaps rendered more popularisable) Davis’s model into what they call the Usefulness/EOU Grid, which is a 2×2 grid where each quadrant represents a different combination of the two attributes. In the context of software use, this provides a mechanism for discussing the current mix of usefulness and EOU for particular software packages, and for plotting a different course if a different mix is desired, such as the introduction of even more powerful software (Keil, Beranek & Konsynski, 1995).

Criticisms of TAM as a "theory" include its lack of falsifiability, questionable heuristic value, and limited explanatory and predictive power.

Venkatesh and Davis extended the original TAM model to explain perceived usefulness and usage intentions in terms of social influence and cognitive instrumental processes. The extended model, referred to as TAM2, was tested in both voluntary and mandatory settings. The results strongly supported TAM2 (Venkatesh and Davis, 2000).

In an attempt to integrate the main competing user acceptance models, Venkatesh et al. formulated the Unified Theory of Acceptance and Use of Technology (UTAUT). This model was found to outperform each of the individual models (Adjusted R square of 69 percent) (Venkatesh et al., 2003).

For a recent analysis and critique of TAM see Bagozzi (2007).

ee also

* Technology adoption lifecycle
* Technology lifecycle
* Theory of Planned Behavior
* product life cycle management
* diffusion
* Diffusion of Innovations
* new product development
* research and development
* list of information technology management topics
* list of marketing topics


[ Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. "MIS Quarterly", 16, 227-247] .

Ajzen, I., & Fishbein, M. (1980). "Understanding attitudes and predicting social behavior". Englewood Cliffs, NJ: Prentice-Hall.

Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. "Journal of the Association for Information Systems", 8, 244-254.

[ Bagozzi, R. P., Davis, F. D., & Warshaw, P. R. (1992). Development and test of a theory of technological learning and usage. "Human Relations", 45(7), 660-686] .

Bass, F. M. (1969). A new product growth model for consumer durables. "Management Science", 15, 215-227.

Bass, F. M. (1986). The adoption of a marketing model: Comments and observations. In V. Mahajan & Y. Wind (Eds.), "Innovation Diffusion Models of New Product Acceptance". Cambridge, Mass.: Ballinger.

Budd, R. J. (1987). Response bias and the theory of reasoned action. "Social Cognition", 5, 95-107.

Czaja, S. J., Hammond, K., Blascovich, J. J., & Swede, H. (1986). Learning to use a word processing system as a function of training strategy. "Behaviour and Information Technology", 5, 203-216.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. "MIS Quarterly", 13(3), 319-340.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. "Management Science", 35, 982-1003.

Hendrickson, A. R., Massey, P. D., & Cronan, T. P. (1993). On the test-retest reliability of perceived usefulness and perceived ease of use scales. "MIS Quarterly", 17, 227-230.

Keil, M., Beranek, P. M., & Konsynski, B. R. (1995). Usefulness and ease of use: field study evidence regarding task considerations. "Decision Support Systems", 13(1), 75-91.

Segars, A. H., & Grover, V. (1993). Re-examining perceived ease of use and usefulness: A confirmatory factor analysis. "MIS Quarterly", 17, 517-525.

Stewart, T. (1986). Task fit, ease-of-use and computer facilities. In N. Bjørn-Andersen, K. Eason, & D. Robey (Eds.), "Managing computer impact: An international study of management and organizations" (pp. 63-76). Norwood, NJ: Ablex.

Subramanian, G. H. (1994). A replication of perceived usefulness and perceived ease of use measurement. "Decision Sciences", 25(5/6), 863-873.

Szajna, B. (1994). Software evaluation and choice: predictive evaluation of the Technology Acceptance Instrument. "MIS Quarterly", 18(3), 319-324.

Tornatzky, L. G., & Klein, R. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. "IEEE Transactions on Engineering Management", EM-29, 28-45.

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. "Management Science", (46:2), 186-204.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. "MIS Quarterly", (27:3), 425-478.

Wildemuth, B. M. (1992). An empirically grounded model of the adoption of intellectual technologies. "Journal of the American Society for Information Science", 43(3), 210-224.

Wikimedia Foundation. 2010.

См. также в других словарях:

  • Technology Acceptance Model — Das Technology Acceptance Model ist ein informationstheoretisches Modell, welches Aussagen darüber trifft, warum Personen eine Technologie nutzen oder nicht nutzen. Es wurde in der Dissertation von Davis[1]entwickelt und 1989[2] veröffentlicht.… …   Deutsch Wikipedia

  • Technology and society — or technology and culture refers to cyclical co dependence, co influence, co production of technology and society upon the other (technology upon culture, and vice versa). This synergistic relationship occurred from the dawn of humankind, with… …   Wikipedia

  • Technology adoption lifecycle — The technology adoption lifecycle is a sociological model, originally developed by Joe M. Bohlen and George M. Beal in 1957 at Iowa State College. [Citation last1 = Bohlen | first1 = Joe M. author1 link = Joe M. Bohlen last2 = Beal | first2 =… …   Wikipedia

  • Technology — By the mid 20th century, humans had achieved a mastery of technology sufficient to leave the atmosphere of the Earth for the first time and explore space. Technology …   Wikipedia

  • Technology lifecycle — Most new technologies follow a similar technology maturity lifecycle describing the technological maturity of a product. This is not similar to a product life cycle, but applies to an entire technology, or a generation of a technology.Technology… …   Wikipedia

  • Model-driven architecture — (MDA) is a software design approach for the development of software systems. It provides a set of guidelines for the structuring of specifications, which are expressed as models. Model driven architecture is a kind of domain engineering, and… …   Wikipedia

  • Technology Management — is set of management disciplines that allows organization to manage it s technological fundaments to create competitive advantage. Typical concepts used in technology managment are technology strategy (a logic or role of technology in… …   Wikipedia

  • Technology management — is set of management disciplines that allows organizations to manage its technological fundamentals to create competitive advantage. Typical concepts used in technology management are technology strategy (a logic or role of technology in… …   Wikipedia

  • Technology roadmap — The context of product managementThe existence of product managers in the product software industry indicates that software is becoming more commercialized as a standard product. This manager is responsible over the whole line of software… …   Wikipedia

  • TECHNOLOGY AND HALAKHAH — Halakhah deals with the prescription of the behavior of the individual, the family, the community, and a Jewish state. It encompasses all the actions in one s life. It sets forth both the principles and the guidelines along which day to day… …   Encyclopedia of Judaism

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»