Ancient Egyptian multiplication

Ancient Egyptian multiplication

In mathematics, ancient Egyptian multiplication (also known as Egyptian multiplication, Ethiopian multiplication, Russian multiplication, or peasant multiplication), one of two multiplication methods used by scribes, was a systematic method for multiplying two numbers that does not require the multiplication table, only the ability to multiply and divide by 2, and to add. It decomposes one of the multiplicands (generally the larger) into a sum of powers of two and creates a table of doublings of the second multiplicand. This method may be called mediation and duplation, where mediation means halving one number and duplation means doubling the other number. It is still used in some areas.

The second Egyptian multiplication and division technique was known from the hieratic Moscow and Rhind Mathematical Papyri written in the seventeenth century B.C. by the scribe Ahmes.

Contents

The decomposition

The decomposition into a sum of powers of two was not intended as a change from base ten to base two; the Egyptians then were unaware of such concepts and had to resort to much simpler methods. The ancient Egyptians had laid out tables of a great number of powers of two so as not to be obliged to recalculate them each time. The decomposition of a number thus consists of finding the powers of two which make it up. The Egyptians knew empirically that a given power of two would only appear once in a number. For the decomposition, they proceeded methodically; they would initially find the largest power of two less than or equal to the number in question, subtract it out and repeat until nothing remained. (The Egyptians did not make use of the number zero in mathematics).

To find the largest power of 2 keep doubling your answer starting with number 1.

Example:

1 x 2 = 2
2 x 2 = 4
4 x 2 = 8
8 x 2 = 16
16 x 2 = 32

Example of the decomposition of the number 25:

  • the largest power of two less than or equal to 25 is 16,
  • 25 – 16 = 9,
  • the largest power of two less than or equal to 9 is 8,
  • 9 – 8 = 1,
  • the largest power of two less than or equal to 1 is 1,
  • 1 – 1 = 0

25 is thus the sum of the powers of two: 16, 8 and 1.

The table

After the decomposition of the first multiplicand, it is necessary to construct a table of powers of two times the second multiplicand (generally the smaller) from one up to the largest power of two found during the decomposition. In the table, a line is obtained by multiplying the preceding line by two.

For example, if the largest power of two found during the decomposition is 16, and the second multiplicand is 7, the table is created as follows:

  • 1; 7
  • 2; 14
  • 4; 28
  • 8; 56
  • 16; 112

The result

The result is obtained by adding the numbers from the second column for which the corresponding power of two makes up part of the decomposition of the first multiplicand.

The main advantage of this technique is that it makes use of only addition, subtraction, and multiplication by two.

Example

Here, in actual figures, is how 238 is multiplied by 13. The lines are multiplied by two, from one to the next. A check mark is placed by the powers of two in the decomposition of 13.

1 238
2 476
4 952
8 1904

13  3094

Since 13 = 8 + 4 + 1, distribution of multiplication over addition gives 13 × 238 = (8 + 4 + 1) × 238 = 8 x 238 + 4 × 238 + 1 × 238 = 1904 + 952 + 238 = 3094.

See also

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Multiplication — Multiply redirects here. For other uses, see Multiplication (disambiguation). For methods of computing products, including those of very large numbers, see Multiplication algorithm. Four bags of three marbles gives twelve marbles. There are also… …   Wikipedia

  • Multiplication algorithm — A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are in use. Efficient multiplication algorithms have existed since the advent of the decimal system.… …   Wikipedia

  • Egyptian mathematics — refers to the style and methods of mathematics performed in Ancient Egypt.IntroductionEgyptian multiplication and division employed the method of doubling and halving (respectively) a known number to approach the solution. The method of false… …   Wikipedia

  • Ancient Egypt — was an ancient civilization in eastern North Africa, concentrated along the lower reaches of the Nile River in what is now the modern nation of Egypt. The civilization began around 3150 BC [Only after 664 BC are dates secure. See Egyptian… …   Wikipedia

  • Outline of ancient Egypt — Ancient Egypt was an ancient civilization of eastern North Africa, concentrated along the lower reaches of the Nile River in what is now the modern country of Egypt. Egyptian civilization coalesced around 3150 BC (according to conventional… …   Wikipedia

  • Sieve of Eratosthenes — Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime s square). In mathematics, the sieve of Eratosthenes (Greek: κόσκινον Ἐρατοσθένους), one of a number of prime number sieves, is a simple,… …   Wikipedia

  • Discrete logarithm — In mathematics, specifically in abstract algebra and its applications, discrete logarithms are group theoretic analogues of ordinary logarithms. In particular, an ordinary logarithm loga(b) is a solution of the equation ax = b over the… …   Wikipedia

  • Chakravala method — The chakravala method (Hindi: चक्रवाल विधि) is a cyclic algorithm to solve indeterminate quadratic equations, including Pell s equation. It is commonly attributed to Bhāskara II, (c. 1114 – 1185 CE)[1][2] although some attribute it to Jayadeva (c …   Wikipedia

  • Cipolla's algorithm — In computational number theory, Cipolla s algorithm is a technique for solving a congruence of the form x2 = n, where , so n is the square of x, and where p is an odd prime. Here denotes the finite field with p elements; . Th …   Wikipedia

  • Miller–Rabin primality test — The Miller–Rabin primality test or Rabin–Miller primality test is a primality test: an algorithm which determines whether a given number is prime, similar to the Fermat primality test and the Solovay–Strassen primality test. Its original version …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”