A turboprop engine is a type of aircraft powerplant that uses a gas turbine engine to drive a propeller. The gas turbine is designed specifically for this application, with almost all of its output being used to drive the propeller. The engine's exhaust gases contain relatively little energy as compared to a jet engine and play a minor role in the propulsion of the aircraft.

The propeller is coupled to the turbine through a reduction gear that converts the high RPM, low torque output to low RPM, high torque. The propeller itself is normally a constant speed (variable pitch) type similar to that used with larger reciprocating aircraft engines.

Currently, turboprop engines are generally used on small subsonic aircraft, but some aircraft outfitted with turboprops have cruising speeds in excess of 500 kt (926 km/h, 575 mph). Large military and civil aircraft, such as the Lockheed L-188 Electra, have also used turboprop power.

In its simplest form, a turboprop consists of an intake, compressor, combustor, turbine and a propelling nozzle. Air is drawn into the intake and compressed by the compressor. Fuel is then added to the compressed air in the combustor, where the fuel-air mixture then combusts. The hot combustion gases expand through the turbine. Some of the power generated by the turbine is used to drive the compressor. The rest is transmitted through the reduction gearing to the propeller. Further expansion of the gases occurs in the propelling nozzle, where the gases exhaust to atmospheric pressure. The propelling nozzle provides a relatively small proportion of the thrust generated by a turboprop.

Turboprops are very efficient at modest flight speeds (below 450 mph) because the jet velocity of the propeller (and exhaust) is relatively low. Due to the high price of turboprop engines, they are mostly used where high-performance short-takeoff and landing (STOL) capability and efficiency at modest flight speeds are required. In a civilian aviation context, the most common application of turboprop engines is in small commuter aircraft, where their greater reliability as compared to reciprocating engines offsets their higher initial cost.

Technological aspects

In a turboprop, much of the jet thrust is sacrificed in favor of shaft power, which is obtained by extracting additional power (to that necessary to drive the compressor) from the turbine expansion process. While the power turbine may be integral with the gas generator section, many turboprops today feature a free power turbine, on a separate coaxial shaft. This enables the propeller to rotate freely, independent of compressor speed. Owing to the additional expansion in the turbine system, the residual energy in the exhaust jet is low. Consequently, the exhaust jet produces (typically) less than 10% of the total thrust.

Because the propeller is much larger in diameter than the power turbine, the tip speed of the propeller can become supersonic. To prevent this, a speed reduction gearbox is inserted between the power turbine and propeller shafts. The gearbox is part of the engine, whereas in a turboshaft the (helicopter) rotor reduction gearbox is remote from the engine.

Residual thrust on a turboshaft is avoided by further expansion in the turbine system and/or truncating and turning the exhaust through 180 degrees, to produce two opposing jets. Apart from the above, there is very little difference between a turboprop and a turboshaft.

While most modern turbojet and turbofan engines use axial-flow compressors, turboprop engines usually contain at least one stage of centrifugal compression. Centrifugal compressors have the advantage of being simple and lightweight, at the expense of a streamlined shape.

Propellers lose efficiency as aircraft speed increases, so turboprops are normally not used on high-speed aircraft. However, propfan engines, which are very similar to turboprop engines, can cruise at flight speeds approaching Mach 0.75. To increase the efficiency of the propellers, a mechanism can be used to alter the pitch, thus adjusting the pitch to the airspeed. The variable pitch propeller, also called controllable pitch propeller, can also be used to generate negative thrust while decelerating on the runway. After an engine outage, the pitch can be adjusted to a vaning pitch (called feathering), thus minimizing the drag of the non-functioning propeller.

Some commercial aircraft with turboprop engines include the Bombardier Dash 8, ATR 42, ATR 72, BAe Jetstream 31, Embraer EMB 120 Brasilia, The Fairchild Swearingen Metroliner, and Saab 340 and 2000.


The world's first turboprop was the Jendrassik Cs-1 designed by the Hungarian mechanical engineer György Jendrassik. It was produced and tested in the Ganz factory in Budapest between 1939 and 1942. It was planned to fit to the Varga RMI-1 X/H twin-engined reconnaissance bomber designed by László Varga in 1940, but the program was cancelled. Jendrassik had also designed a small-scale 75 kW turboprop in 1937. The first British turboprop engine was the Rolls-Royce RB.50 Trent, a converted Derwent II fitted with reduction gear and a Rotol 7-ft, 11-in five-bladed propeller. Two Trents were fitted to Gloster Meteor "EE227" — the sole "Trent-Meteor" — which became the first relatively reliable turboprop powered aircraft. From their experience with the Trent, Rolls-Royce developed the Dart, which became one of the most reliable turboprop engines ever built. Dart production continued for more than fifty years.

While the Soviet Union had the technology to create a jet-powered strategic bomber comparable to Boeing's B-52 Stratofortress, they instead produced the Tu-95 "Bear", which uses 8 contra-rotating propellers (two per nacelle) with supersonic tip speeds to achieve maximum cruise speeds in excess of 575 mph, faster than many of the first jet aircraft and comparable to jet cruising speeds for most missions. The Bear would serve as their most successful long-range combat and surveillance aircraft and symbol of Soviet power projection throughout the end of the 20th century. The USA would incorporate contra-rotating turboprop engines, such as the ill-fated Allison T40, into a series of experimental aircraft during the 1950s, but none would be adopted into service.

The first American turboprop was the General-Electric T31. America skipped over turboprop airliners in favor of the Boeing 707, but the technology of the Lockheed Electra would be used in both the long-lived P-3 Orion as well as the classic C-130 Hercules, one of the most successful military aircraft ever in terms of length of production. One of the most popular turboprop engines is the Pratt & Whitney Canada PT6 engine.

ee also

* Gas turbine
* Jet engine
* Jet engine performance
* Jet aircraft
* Jetboat
* Propfan
* Ramjet
* Supercharger
* Turbocharger
* Turbofan
* Turbojet
* Turboshaft

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • TurboProp — (komb. aus: Turbine u. Propeller) ist eine landläufige Bezeichnung für Propellerturbinenluftstrahltriebwerk (auch als PTL bezeichnet). Flugzeuge mit diesem Triebwerk sind auf Fluggeschwindigkeiten bis um 80 Prozent der Schallgeschwindigkeit (0,8… …   Deutsch Wikipedia

  • turboprop — [tʉr′bō präp΄] n. [ TURBO + PROP(ELLER)] 1. a turbojet engine whose turbine shaft, through reduction gears, drives a propeller that develops most of the thrust: in full turboprop engine 2. an aircraft propelled by such an engine …   English World dictionary

  • turboprop — ► NOUN ▪ a jet engine in which a turbine is used to drive a propeller …   English terms dictionary

  • Turboprop — Triebwerke einer Bristol Britannia, einem der ersten Turboprop Flugzeuge Turboprop (kombiniert aus Turbine und Propeller) ist eine landläufige Bezeichnung für Propellerturbinenluftstrahltriebwerk (auch als PTL bezeichnet). Flugzeuge mit diesem… …   Deutsch Wikipedia

  • turboprop — /terr boh prop /, n. 1. See turbo propeller engine. 2. an airplane equipped with one or more turbo propeller engines. [1940 45; TURBO + PROP3] * * * Hybrid engine that provides jet thrust and also drives a propeller. It is similar to the turbojet …   Universalium

  • turboprop — noun Date: 1945 1. turboprop engine 2. an airplane powered by turboprop engines …   New Collegiate Dictionary

  • turboprop — [[t]tɜ͟ː(r)boʊprɒp[/t]] turboprops also turbo prop 1) N COUNT A turboprop is a turbine engine that makes an aircraft propeller go round. 2) N COUNT A turboprop is an aircraft with one or more turboprops …   English dictionary

  • turboprop — n. type of jet engine which includes a turbine driven propeller adding to the thrust of the jet; aircraft powered by one or more turboprop engines (Aeronautics) …   English contemporary dictionary

  • turboprop — noun A type of gas turbine aircraft engine that drives and obtains essentially all thrust from an external (typically unducted) propeller. Syn: propjet …   Wiktionary

  • Turboprop — Tụr|bo|prop 〈m. 6; Kurzw. für〉 Propellerturbine * * * Tụrboprop,   Kurzbezeichnung für Propeller Turbinen Luftstrahltriebwerk (Strahltriebwerk) …   Universal-Lexikon

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.