Osteosarcoma


Osteosarcoma
Osteosarcoma
Classification and external resources

Intermediate magnification micrograph of an osteosarcoma (center and right of image) adjacent to non-malignant bone (left-bottom of image). The top-right of the image has poorly-differentiated tumor. Osteoid with a high density of malignant cells is seen between the non-malignant bone and poorly-differentiated tumor. H&E stain.
ICD-10 C40-C41
ICD-9 170
ICD-O: M9180/3
OMIM 259500
DiseasesDB 9392
MedlinePlus 001650
eMedicine ped/1684 orthoped/531 radio/504 radio/505
MeSH D012516

Osteosarcoma is an aggressive cancerous neoplasm arising from primitive transformed cells of mesenchymal origin that exhibit osteoblastic differentiation and produce malignant osteoid. It is the most common histological form of primary bone cancer.[1]

Contents

Incidence

Osteosarcoma is the eighth most common form of childhood cancer, comprising 2.4% of all malignancies in pediatric patients, and approximately 20% of all primary bone cancers.[1]

Incidence rates for osteosarcoma in U.S. patients under 20 years of age are estimated at 5.0 per million per year in the general population, with a slight variation between individuals of black, Hispanic, and white ethnicities (6.8, 6.5, and 4.6 per million per year, respectively). It is slightly more common in males (5.4 per million per year) than in females (4.0 per million per year).[1]

There is a preference for origination in the metaphyseal region of tubular long bones, with 42% occurring in the femur, 19% in the tibia, and 10% in the humerus. About 8% of all cases occur in the skull and jaw, and another 8% in the pelvis.[1]

Prevalence

Osteogenic sarcoma is the sixth leading cancer in children under age 15. Osteogenic sarcoma affects 400 children under age 20 and 500 adults (most between the ages of 15-30) every year in the USA. Approximately 1/3 of the 900 will die each year, or about 300 a year. A second peak in incidence occurs in the elderly, usually associated with an underlying bone pathology such as Paget's disease, medullary infarct, or prior irradiation.

Genetic Predisposition

1. Familial cases where the deletion of chromosome 13q14 thus inactivating the retinoblastoma gene (RB gene) and is associated with high risk of osteosarcoma to develop.

2. Bone dysplasias, including Paget's disease, fibrous dysplasia, enchondromatosis, and hereditary multiple exostoses, increase the risk of osteosarcoma.

3. Li-Fraumeni syndrome (germline TP53 mutation) is a predisposing factor for osteosarcoma development.

4. Rothmund-Thomson syndrome (i.e. autosomal recessive association of congenital bone defects, hair and skin dysplasias, hypogonadism, cataracts) is associated with increased risk of osteosarcoma.

Variants

1. Conventional: Osteoblastic, Chondroblastic, Fibroblastic

2. Multifocal

3. Telangiectatic

4. Small cell

5. Intraosseous well-differentiated

6. Intracortical

7. Periosteal

8. Paraosteal

9. High-grade surface

10. Extraosseous

Treatment

Complete radical surgical en bloc resection is the treatment of choice in osteosarcoma.[1]

Although about 90% of patients are able to have limb-salvage surgery, complications - particularly infection, prosthetic loosening and non-union - or local tumor recurrence may cause the need for further surgery or amputation. Mifamurtide is used after a patient has had surgery to remove the tumor and together with chemotherapy to kill remaining cancer cells to reduce the risk of cancer coming back.

Mortality and survival

Deaths due to malignant neoplasms of the bones and joints account for an unknown amount of childhood cancer deaths. Mortality rates due to osteosarcoma have been declining at approximately 1.3% per year. Long-term survival probabilities for osteosarcoma have improved dramatically during the late 20th century and approximated 68% in 2009.[1]

Pathology

Predilections of osteosarcoma

The tumor may be localized at the end of the long bone. Most often it affects the upper end of tibia or humerus, or lower end of femur. Osteosarcoma tends to affect regions around the knee in 60% of cases, 15% around the hip, 10% at the shoulder, and 8% in the jaw. The tumor is solid, hard, irregular ("fir-tree," "moth-eaten" or "sun-burst" appearance on X-ray examination) due to the tumor spicules of calcified bone radiating in right angles. These right angles form what is known as Codman's triangle. Surrounding tissues are infiltrated.

High magnification micrograph showing osteoid formation in an osteosarcoma, H&E stain

Microscopically: The characteristic feature of osteosarcoma is presence of osteoid (bone formation) within the tumor. Tumor cells are very pleomorphic (anaplastic), some are giant, numerous atypical mitoses. These cells produce osteoid describing irregular trabeculae (amorphous, eosinophilic/pink) with or without central calcification (hematoxylinophilic/blue, granular) - tumor bone. Tumor cells are included in the osteoid matrix. Depending on the features of the tumor cells present (whether they resemble bone cells, cartilage cells or fibroblast cells), the tumor can be subclassified. Osteosarcomas may exhibit multinucleated osteoclast-like giant cells.[2]

Causes

The causes of osteosarcoma are not known.

Several research groups are investigating cancer stem cells and their potential to cause tumors.[3] The connection between osteosarcoma and fluoride has been investigated; there is some association between water fluoridation and deaths due to osteosarcoma. One study showed 6.9 times the occurrence of osteosarcoma in fluoridated communities compared to non-fluoridated areas.[4] Radiotherapy for unrelated conditions may be a rare cause.[5]

Symptoms

Symptoms

Many patients first complain of pain that may be worse at night, and may have been occurring for some time. If the tumor is large, it can appear as a swelling. The affected bone is not as strong as normal bones and may fracture with minor trauma (a pathological fracture).

Diagnosis

Family physicians and orthopedists rarely see a malignant bone tumor (most bone tumors are benign). Thus, many patients are initially misdiagnosed with cysts or muscle problems, and some are sent straight to physical therapy without an x-ray.

The route to osteosarcoma diagnosis usually begins with an x-ray, continues with a combination of scans (CT scan, PET scan, bone scan, MRI) and ends with a surgical biopsy. A characteristic often seen in an X-ray is the 'Codman's Triangle' which is basically a subperiosteal lesion formed when the periosteum is raised due to the tumor. Films are suggestive, but bone biopsy is the only definitive method to determine whether a tumor is malignant or benign.

The biopsy of suspected osteosarcoma should be performed by a qualified orthopedic oncologist. The American Cancer Society states: "Probably in no other cancer is it as important to perform this procedure properly. An improperly performed biopsy may make it difficult to save the affected limb from amputation."

Treatment

Patients with osteosarcoma are best managed by a medical oncologist and an orthopedic oncologist experienced in managing sarcomas. Current standard treatment is to use neoadjuvant chemotherapy (chemotherapy given before surgery) followed by surgical resection. The percentage of tumor cell necrosis (cell death) seen in the tumor after surgery gives an idea of the prognosis and also lets the oncologist know if the chemotherapy regime should be altered after surgery.

Standard therapy is a combination of limb-salvage orthopedic surgery when possible (or amputation in some cases) and a combination of high dose methotrexate with leucovorin rescue, intra-arterial cisplatin, adriamycin, ifosfamide with mesna, BCD, etoposide, muramyl tri-peptite (MTP). Rotationplasty is also another surgical technique that may be used. Ifosfamide can be used as an adjuvant treatment if the necrosis rate is low.

Despite the success of chemotherapy for osteosarcoma, it has one of the lowest survival rates for pediatric cancer. The best reported 10-year survival rate is 92%; the protocol used is an aggressive intra-arterial regimen that individualizes therapy based on arteriographic response.[6] Three-year event-free survival ranges from 50% to 75%, and five-year survival ranges from 60% to 85+% in some studies. Overall, 65-70% patients treated five years ago will be alive today .[7] These survival rates are overall averages and vary greatly depending on the individual necrosis rate.

Fluids are given for hydration, while drugs like Kytril and Zofran help with nausea and vomiting. Neupogen and Neulasta help with white blood cell counts and neutrophil counts. Blood transfusions and epogen help with anemia.

Prognosis

Prognosis is separated into three groups.

  • Stage I osteosarcoma is rare and includes parosteal osteosarcoma or low-grade central osteosarcoma. It has an excellent prognosis (>90%) with wide resection.
  • Stage II prognosis depends on the site of the tumor (proximal tibia, femur, pelvis, etc.), size of the tumor mass (in cm.), and the degree of necrosis from neoadjuvant chemotherapy (chemotherapy prior to surgery). Other pathological factors such as the degree of p-glycoprotein, whether the tumor is cxcr4-positive,[8] or Her2-positive are also important, as these are associated with distant metastases to the lung. The prognosis for patients with metastatic osteosarcoma improves with longer times to metastases, (more than 12 months-24 months), a smaller number of metastases, and their resectability. It is better to have fewer metastases than longer time to metastases. Those with a longer length of time(>24months) and few nodules (two or fewer) have the best prognosis with a 2-year survival after the metastases of 50%, 5-year of 40% and 10 year of 20%. If metastases are both local and regional, the prognosis is worse.
  • Initial presentation of stage III osteosarcoma with lung metastases depends on the resectability of the primary tumor and lung nodules, degree of necrosis of the primary tumor, and maybe the number of metastases. Overall survival prognosis is about 30%.[9]

Research, information and support

In the UK and Ireland The Bone Cancer Research Trust (BCRT) funds research and provides information on Ewing sarcoma and other bone cancers. This includes information for teenagers who have this condition.

Canine osteosarcoma

X-ray of osteosarcoma of the distal femur in a dog

Risk factors

Osteosarcoma is the most common bone tumor in dogs and typically afflicts middle-age large and giant breed dogs such as Irish Wolfhounds, Greyhounds, German Shepherds, Rottweilers, mountain breeds (great Pyrenees, St. Bernard, Leonberger, Newfoundland), Doberman Pinschers and Great Danes. It has a ten times greater incidence in dogs than humans.[10] A hereditary base has been shown in St. Bernard dogs.[11] Spayed/neutered dogs have twice the risk of intact ones to develop osteosarcoma.[12] Infestation with the parasite Spirocerca lupi can cause osteosarcoma of the esophagus.[13]

Clinical presentation

The most commonly affected bones are the proximal humerus, the distal radius, the distal femur, and the tibia,[14] following the basic premise "far from the elbow, close to the knee". Other sites include the ribs, the mandible, the spine, and the pelvis. Rarely, osteosarcoma may arise from soft-tissues (extraskeletal osteosarcoma). Metastasis of tumors involving the limb bones is very common, usually to the lungs. The tumor causes a great deal of pain, and can even lead to fracture of the affected bone. As with human osteosarcoma, bone biopsy is the definitive method to reach a final diagnosis. Osteosarcoma should be differentiated from other bone tumours and a range of other lesions, such as osteomyelitis. Differential diagnosis of the osteosarcoma of the skull in particular includes, among others, chondrosarcoma and the multilobular tumour of bone.[15][16]

Treatment and prognosis

Amputation of the leg is the initial treatment, although this alone will not prevent metastasis. Chemotherapy combined with amputation improves the survival time, but most dogs still die within a year.[14] There are surgical techniques designed to save the leg (limb-sparing procedures), but they do not improve the prognosis. One key difference between osteosarcoma in dogs and humans is that the cancer is far more likely to spread to the lungs in dogs.

Some current studies indicate that osteoclast inhibitors such as alendronate and pamidronate may have beneficial effects on the quality of life by reducing osteolysis, thus reducing the degree of pain as well as the risk of pathological fractures.[17]

One of the concerns with canine osteosarcoma is major pain. If a pet parent chooses an alternative to traditional painkiller medications, accupuncture has been proven to beneficial. There are many benfits to pet acupuncture. Acupunture has been practiced in ancient Chinese medicine for thousands of years in treating humans with multiple diseases. Several years ago, it seemed somewhat unusual for furry four-legged family members. Since then this has almost become very common in Veterinary medicine. One of the most renowned schools of Veterinary medicine Colorado State University now teaches acupuncture to Veterinary students. There are many benfits to acupunture. One of the great benefits of acupuncture is pain management. Often cancer pet parents face the problem of pain, acupuntcure not only helps reduce pain, it can also eliminate the need for pain medication altogether, which is beneficial to the overall health of the pet. Pets also benefit from the balancing acupuncture provides.

Acupunture is very commonly used for dogs with hip dysplasia, and there is a very noticeable physical difference in the dog's ability to walk without pain and move normally. There are many benfits to pet acupuncture. Acupunture has been practiced in ancient Chinese medicine for thousands of years in treating humans with multiple diseases. Several years ago, it seemed somewhat unusual for furry four-legged family members. Since then this has almost become very common in Veterinary medicine. One of the most renowned schools of Veterinary medicine Colorado State University now teaches acupuncture to Veterinary students. There are many benfits to acupunture. One of the great benefits of acupuncture is pain management. Often cancer pet parents face the problem of pain, acupuntcure not only helps reduce pain, it can also eliminate the need for pain medication altogether, which is beneficial to the overall health of the pet. Pets also benefit from the balancing acupuncture provides. Acupunture is very commonly used for dogs with hip dysplasia, and there is a very noticeable physical difference in the dog's ability to walk without pain and move normally. [18]

Experimental laser procedure

Autologous patient specific tumor antigen response (apSTAR Veterinary Cancer Laser System: The use of a laser combined with a polymer has been shown to enhance tumor immunity and improve the rate of primary and metastatic tumor regression in laboratory models of tumors. IMULAN BioTherapeutics, LLC has recently started examining the use of this laser device, termed apSTAR, for dogs with osteosarcoma and other tumor types.[19]

Osteosarcoma in cats

Osteosarcoma is also the most common bone tumor in the cat, although not as frequently encountered, and most typically affects the rear legs. The cancer is less aggressive in cats than in dogs, and therefore amputation alone can lead to a significant survival time.[14]

People diagnosed with osteosarcoma

Terry Fox (1958–1981) began a run across Canada to raise money for cancer research. He developed osteogenic sarcoma as a teenager and had a leg amputated.

References

  1. ^ a b c d e f Ottaviani G., Jaffe N. (2009). The epidemiology of osteosarcoma. In: Jaffe N. et al. “Pediatric and Adolescent Osteosarcoma”. New York: Springer. doi:10.1007/978-1-4419-0284-9_1. ISBN 978 1 4419 0283 2. PMID 20213383. 
  2. ^ Papalas JA, Balmer NN, Wallace C, Sangüeza OP (June 2009). "Ossifying dermatofibroma with osteoclast-like giant cells: report of a case and literature review". Am J Dermatopathol 31 (4): 379–83. doi:10.1097/DAD.0b013e3181966747. PMID 19461244. 
  3. ^ Osuna D, de Alava E (2009). "Molecular pathology of sarcomas". Rev Recent Clin Trials 4 (1): 12–26. doi:10.2174/157488709787047585. PMID 19149759. 
  4. ^ National Health and Medical Research Council (Australia) (2007). "A systematic review of the efficacy and safety of fluoridation" (PDF). http://www.nhmrc.gov.au/PUBLICATIONS/synopses/_files/eh41.pdf. Retrieved 2009-02-24. [dead link] Summary: Yeung CA (2008). "A systematic review of the efficacy and safety of fluoridation". Evid Based Dent 9 (2): 39–43. doi:10.1038/sj.ebd.6400578. PMID 18584000. Lay summary – NHMRC (2007). 
  5. ^ Dhaliwal J, Sumathi VP and Grimer RJ. Radiation-induced periosteal osteosarcoma. Grand Rounds 10: 13-18 [1]
  6. ^ [http://www.thedenverclinic.com/images/stories/Published_articles/Ped_OGS.pdf Wilkins RM, Cullen JW, Odom L, Jamroz BA, Cullen PM, Fink K, Peck SD, Stevens SL, Kelly CM, Camozzi AB: Superior survival in treatment of primary non-metastatic pediatric osteosarcoma of the extremity. Ann Surg Oncol 10:498-507, 2003.
  7. ^ Buecker, PJ, Gebhardt, M and Weber, K (2005). "Osteosarcoma". ESUN. http://sarcomahelp.org/osteosarcoma.html. Retrieved 2009-04-15. 
  8. ^ http://www.osteosarcomasupport.org/cxcr4_metastases.pdf
  9. ^ Koshkina, NV and Corey, S (2008). "Novel Targets to Treat Osteosarcoma Lung Metastases". ESUN. http://sarcomahelp.org/research_center/osteosarcoma_lung_metastases.html. Retrieved 2009-04-14. 
  10. ^ Withrow, S.J. (2003). "Limb Sparing Trials and Canine Osteosarcoma". Genes, Dogs and Cancer: 3rd Annual Canine Cancer Conference, 2003. http://www.ivis.org/proceedings/Keystone/2003/withrow/chapter_frm.asp?LA=1. Retrieved 2006-06-16. 
  11. ^ Bech-Nielsen, S., Haskins, M. E. et al. (1978). "Frequency of osteosarcoma among first-degree relatives of St. Bernard dogs". J Natl Cancer Inst 60 (2): 349–53. PMID 271748. 
  12. ^ Ru, B., Terracini, G. et al. (1998). "Host related risk factors for canine osteosarcoma". Vet J 156(1):31-9 156 (1): 31–9. doi:10.1016/S1090-0233(98)80059-2. PMID 9691849. 
  13. ^ Ranen E, Lavy E et al. (2004). "Spirocercosis-associated esophageal sarcomas in dogs. A retrospective study of 17 cases (1997-2003)". Vet Parasitol 119(2-3):209-21 119 (2–3): 209. doi:10.1016/j.vetpar.2003.10.023. 
  14. ^ a b c Morrison, Wallace B. (1998). Cancer in Dogs and Cats (1st ed.). Williams and Wilkins. ISBN 0-683-06105-4. 
  15. ^ Loukopoulos P, Thornton JR , Robinson WF. Clinical and pathologic relevance of p53 index in canine osseous tumors. Veterinary Pathology 2003; 40:237-248
  16. ^ Psychas V, Loukopoulos P, Polizopoulou ZS , Sofianidis G. Multilobular tumour of the caudal cranium causing severe cerebral and cerebellar compression in a dog. Journal of Veterinary Science 2009; 10:81-83.
  17. ^ Tomlin, J. L., Sturgeon, C. et al. (2000). "Use of the bisphosphonate drug alendronate for palliative management of osteosarcoma in two dogs". Vet Rec 147(5):129-32. 
  18. ^ Apollo's Creed The story of our fight for time a battle of love against cancer by Deb Estes http://DogCancerBooks.com ISBN:0-9779960-8-5 (Books to Believe In)
  19. ^ http://www.vetcancer.com/

Further reading

  • James, H. (1979). Promises in the Dark. New York: Bantam Books. ISBN 0-553-13453-1.  Story of a young girl's osteosarcoma fight and its effect on her relationship with her boyfriend
  • Belshaw, Sheila M. (2001). Fly With a Miracle. Denor Press. ISBN 0 9526056 7 8.  The story of a family's journey through teenage osteosarcoma and its aftermath.
  • Trottier, Maxine (2005). Terry Fox: A Story of Hope. Markham, Ont: Scholastic Canada. ISBN 0-439-94888-6.  About Terry Fox and his quest to raise $25 million for cancer research by running across Canada on his prosthetic leg. Also The Terry Fox Story, a 1983 movie.
  • Jaffe, N. (2010). Pediatric and Adolescent Osteosarcoma. New York: Springer. ISBN 978 1 4419 0283 2.  Osteosarcoma research: past, present and future.

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • osteosarcoma — m. oncol. Tumor maligno óseo formado por tejido conjuntivo maligno que produce metástasis pulmonar rápidamente. Suele producirse en la tibia y/o en el fémur de niños y adolescentes varones. El tratamiento se realiza con radioterapia,… …   Diccionario médico

  • Osteosarcoma — Os te*o*sar*co ma, n.; pl. {Osteosarcomata}. [NL. See {Osteo }, and {sarcoma}.] (Med.) A tumor having the structure of a sarcoma in which there is a deposit of bone; sarcoma connected with bone. [1913 Webster] …   The Collaborative International Dictionary of English

  • osteosarcoma — (de «osteo » y «sarcoma») m. Med. Sarcoma de los huesos …   Enciclopedia Universal

  • osteosarcoma — sustantivo masculino 1. Área: medicina Tumor maligno formado por tejido óseo …   Diccionario Salamanca de la Lengua Española

  • osteosarcoma — [äs΄tē ō sär kō′mə] n. pl. osteosarcomas, osteosarcomata [äs΄tē ō sär kō′mə tə] a common type of sarcoma of the bone characterized by rapid spreading, esp. to the lungs, and pain, swelling, etc. in the large, long bones …   English World dictionary

  • Osteosarcoma — En este artículo se detectó el siguiente problema: Requiere una revisión ortográfica y gramatical. Por favor, edítalo para mejorarlo, o debate en la discusión …   Wikipedia Español

  • osteosarcoma — /os tee oh sahr koh meuh/, n., pl. osteosarcomas, osteosarcomata / meuh teuh/. Pathol. a malignant tumor of the bone. [1800 10; OSTEO + SARCOMA] * * * ▪ medicine also called  osteogenic sarcoma        most common bone cancer, primarily affecting… …   Universalium

  • Osteosarcoma — A cancer of the bone that is most common in children. Also called osteogenic sarcoma. * * * SYN: osteogenic sarcoma. parosteal o. low grade o. arising on the surface of bone without involvement of the underlying marrow, usually occurring as a… …   Medical dictionary

  • osteosarcoma — {{#}}{{LM O28444}}{{〓}} {{[}}osteosarcoma{{]}} ‹os·te·o·sar·co·ma› {{《}}▍ s.m.{{》}} Tumor maligno del tejido óseo. {{★}}{{\}}ETIMOLOGÍA:{{/}} Del griego ostéon (hueso) y sarcoma …   Diccionario de uso del español actual con sinónimos y antónimos

  • osteosarcoma — noun (plural mas; also osteosarcomata) Etymology: New Latin Date: circa 1826 a sarcoma derived from bone or containing bone tissue …   New Collegiate Dictionary