Inverse hyperbolic function

Inverse hyperbolic function

The inverses of the hyperbolic functions are the area hyperbolic functions. The names hint at the fact that they compute the area of a sector of the unit hyperbola x^{2} - y^{2} = 1 in the same way that the inverse trigonometric functions compute the arclength of a sector on the unit circle x^{2} + y^{2} = 1.The usual abbreviations for them in mathematics are "arsinh, arcsinh" (in the USA) or "asinh" (in computer science). The notation "sinh-1 (x), cosh-1(x)" etc. are also used, despite the fact that care must be taken to avoid misinterpretations of the superscript "-1" as a power as opposed to a shorthand for inverse. The acronyms "arcsinh", "arccosh" etc. are commonly used, even though they are misnomers, since the prefix "arc" is the abbreviation for "arcus", while the prefix "ar" stands for "area".

Logarithmic representation

The operators are defined in the complex plane by:

:operatorname{arsinh}, x = ln(x + sqrt{x^2 + 1}):operatorname{arcosh}, x = ln(x + sqrt{x-1}sqrt{x+1}):operatorname{artanh}, x = lnleft(frac{sqrt{1 - x^2{1-x} ight) = frac{1}{2} lnleft(frac{1+x}{1-x} ight):operatorname{arcsch}, x = lnleft(sqrt{1+frac{1}{x^2+frac{1}{x} ight):operatorname{arsech}, x = lnleft(sqrt{frac{1}{x}-1}sqrt{frac{1}{x}+1}+frac{1}{x} ight):operatorname{arcoth}, x = frac{1}{2} lnfrac{x+1}{x-1}

The above square roots are principal square roots. For real arguments which return real values, certain simplifications can be made e.g. sqrt{x - 1}sqrt{x+1}=sqrt{x^2-1}, which are not generally true when using principal square roots.

eries expansions

Expansion series can be obtained for the above functions:

:operatorname{arsinh}, x::= x - left( frac {1} {2} ight) frac {x^3} {3} + left( frac {1 cdot 3} {2 cdot 4} ight) frac {x^5} {5} - left( frac {1 cdot 3 cdot 5} {2 cdot 4 cdot 6} ight) frac {x^7} {7} +cdots::= sum_{n=0}^infty left( frac {(-1)^n(2n)!} {2^{2n}(n!)^2} ight) frac {x^{2n+1 {(2n+1)} , qquad left| x ight| < 1

:operatorname{arcosh}, x::= ln 2x - left( left( frac {1} {2} ight) frac {x^{-2 {2} + left( frac {1 cdot 3} {2 cdot 4} ight) frac {x^{-4 {4} + left( frac {1 cdot 3 cdot 5} {2 cdot 4 cdot 6} ight) frac {x^{-6 {6} +cdots ight)::= ln 2x - sum_{n=1}^infty left( frac {(-1)^n(2n)!} {2^{2n}(n!)^2} ight) frac {x^{-2n {(2n)} , qquad x > 1

:operatorname{artanh}, x = x + frac {x^3} {3} + frac {x^5} {5} + frac {x^7} {7} +cdots = sum_{n=0}^infty frac {x^{2n+1 {(2n+1)} , qquad left| x ight| < 1

:operatorname{arcsch}, x = operatorname{arsinh}, x^{-1}::= x^{-1} - left( frac {1} {2} ight) frac {x^{-3 {3} + left( frac {1 cdot 3} {2 cdot 4} ight) frac {x^{-5 {5} - left( frac {1 cdot 3 cdot 5} {2 cdot 4 cdot 6} ight) frac {x^{-7 {7} +cdots::= sum_{n=0}^infty left( frac {(-1)^n(2n)!} {2^{2n}(n!)^2} ight) frac {x^{-(2n+1) {(2n+1)} , qquad left| x ight| < 1

:operatorname{arsech}, x = operatorname{arcosh}, x^{-1}::= ln frac{2}{x} - left( left( frac {1} {2} ight) frac {x^{2 {2} + left( frac {1 cdot 3} {2 cdot 4} ight) frac {x^{4 {4} + left( frac {1 cdot 3 cdot 5} {2 cdot 4 cdot 6} ight) frac {x^{6 {6} +cdots ight)::= ln frac{2}{x} - sum_{n=1}^infty left( frac {(-1)^n(2n)!} {2^{2n}(n!)^2} ight) frac {x^{2n {2n} , qquad 0 < x le 1

:operatorname{arcoth}, x = operatorname{artanh}, x^{-1}::= x^{-1} + frac {x^{-3 {3} + frac {x^{-5 {5} + frac {x^{-7 {7} +cdots::= sum_{n=0}^infty frac {x^{-(2n+1) {(2n+1)} , qquad left| x ight| > 1

Asymptotic expansion for the arsinh "x" is given by

:operatorname{arsinh}, x = ln 2x + sumlimits_{n = 1}^infty {left( { - 1} ight)^{n - 1} fracleft( {2n - 1} ight)!!2nleft( {2n} ight)!!} frac{1}x^{2n}

Derivatives

:egin{align}frac{d}{dx} operatorname{arsinh}, x & {}= frac{1}{sqrt{1+x^2\frac{d}{dx} operatorname{arcosh}, x & {}= frac{1}{sqrt{x^2-1\frac{d}{dx} operatorname{artanh}, x & {}= frac{1}{1-x^2}\frac{d}{dx} operatorname{arcoth}, x & {}= frac{1}{1-x^2}\frac{d}{dx} operatorname{arsech}, x & {}= frac{mp 1}{x,sqrt{1-x^2; qquad Re{x} gtrless 0\frac{d}{dx} operatorname{arcsch}, x & {}= frac{mp 1}{x,sqrt{1+x^2; qquad Re{x} gtrless 0end{align}

For an example derivation: let "&theta;" = arsinh "x", so::frac{d,operatorname{arsinh}, x}{dx} = frac{d heta}{d sinh heta} = frac{1} {cosh heta} = frac{1} {sqrt{1+sinh^2 heta = frac{1}{sqrt{1+x^2

ee also

* List of integrals of arc hyperbolic functions

External links

* [http://mathworld.wolfram.com/InverseHyperbolicFunctions.html Inverse hyperbolic functions] at MathWorld


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • inverse hyperbolic function — noun The inverse of a hyperbolic function Syn: antihyperbolic function, arc hyperbolic function …   Wiktionary

  • arc-hyperbolic function — noun An inverse hyperbolic function …   Wiktionary

  • Hyperbolic function — A ray through the origin intercepts the hyperbola in the point , where is twice the area between the ray and the …   Wikipedia

  • hyperbolic function — noun A function that is derived from some arithmetic operations on the exponential function with base e and the inverse function, and was named after the corresponding similar trigonometric function. See Also: hyperbolic sine, hyperbolic cosine,… …   Wiktionary

  • Inverse trigonometric functions — Trigonometry History Usage Functions Generalized Inverse functions Further reading …   Wikipedia

  • Hyperbolic secant distribution — Probability distribution name =hyperbolic secant type =density pdf cdf parameters = none support =x in ( infty; +infty)! pdf =frac12 ; operatorname{sech}!left(frac{pi}{2},x ight)! cdf =frac{2}{pi} arctan!left [exp!left(frac{pi}{2},x ight) ight] ! …   Wikipedia

  • function — /fungk sheuhn/, n. 1. the kind of action or activity proper to a person, thing, or institution; the purpose for which something is designed or exists; role. 2. any ceremonious public or social gathering or occasion. 3. a factor related to or… …   Universalium

  • Inverse function — In mathematics, if fnof; is a function from A to B then an inverse function for fnof; is a function in the opposite direction, from B to A , with the property that a round trip (a composition) from A to B to A (or from B to A to B ) returns each… …   Wikipedia

  • Hyperbolic space — In mathematics, hyperbolic n space, denoted H n , is the maximally symmetric, simply connected, n dimensional Riemannian manifold with constant sectional curvature −1. Hyperbolic space is the principal example of a space exhibiting hyperbolic… …   Wikipedia

  • List of integrals of arc hyperbolic functions — The following is a list of integrals (antiderivative functions) of inverse hyperbolic functions. For a complete list of integral functions, see lists of integrals.: intmathrm{arsinh},frac{x}{c},dx = x,mathrm{arsinh},frac{x}{c} sqrt{x^2+c^2}:… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”