Limit (music)

Limit (music)

In music theory, limit or harmonic limit is a way of characterizing the harmony found in a piece or genre of music, or the harmonies that can be made using a particular scale. The term was introduced by Harry Partch, who used it to give an upper bound on the complexity of harmony; hence the name. "Roughly speaking, the larger the limit number, the more harmonically complex and potentially dissonant will the intervals of the tuning be perceived."[1]


The harmonic series and the evolution of music

Overtone series, partials 1-5 numbered About this sound Play .

Harry Partch, Ivor Darreg, and Ralph David Hill are among the many microtonalists to suggest that music has been slowly evolving to employ higher and higher harmonics in its constructs (see emancipation of the dissonance). In medieval music, only chords made of octaves and perfect fifths (involving relationships among the first 3 harmonics) were considered consonant. In the West, triadic harmony arose (Contenance Angloise) around the time of the Renaissance, and triads quickly became the fundamental building blocks of Western music. The major and minor thirds of these triads invoke relationships among the first 5 harmonics.

Around the turn of the 20th century, tetrads debuted as fundamental building blocks in African-American music. In conventional music theory pedagogy, these seventh chords are usually explained as chains of major and minor thirds. However, they can also be explained as coming directly from harmonics greater than 5. For example, the dominant 7th chord in 12-ET approximates 4:5:6:7, while the major 7th chord approximates 8:10:12:15.

Odd-limit and prime-limit

In just intonation, intervals between pitches are drawn from the rational numbers. Since Partch, two distinct formulations of the limit concept have emerged: odd limit (generally preferred for the analysis of simultaneous intervals and chords) and prime limit (generally preferred for the analysis of scales)[citation needed]. Odd limit and prime limit n do not include the same intervals even when n is an odd prime.

Odd limit

For a positive odd number n, the n-odd-limit contains all rational numbers such that the largest odd number that divides either the numerator or denominator is not greater than n.

In Genesis of a Music, Harry Partch considered just intonation rationals according to the size of their numerators and denominators, modulo octaves.[2] Since octaves correspond to factors of 2, the complexity of any interval may be measured simply by the largest odd factor in its ratio. Partch's theoretical prediction of the sensory dissonance of intervals (his "One-Footed Bride") are very similar to those of theorists including Hermann von Helmholtz, William Sethares, and Paul Erlich.[3]

Prime limit

For a prime number n, the n-prime-limit contains all rational numbers that can be factored using primes no greater than n. In other words, it is the set of rationals with nominator and denominator both n-smooth.

p-Limit Tuning. Given a prime number p, the subset of \mathbb{Q}^+ consisting of those rational numbers x whose prime factorization has the form x=p_1^{\alpha_1} p_2^{\alpha_2}... p_r^{\alpha_r} with p_1,...,p_r \le p forms a subgroup of (\mathbb{Q}^+,\cdot). ... We say that a scale or system of tuning uses p-limit tuning if all interval ratios between pitches lie in this subgroup.[4]

In the late 1970s, a new genre of music began to take shape on the West coast of the United States, known as the American gamelan school. Inspired by Indonesian gamelan, musicians in California and elsewhere began to build their own gamelan instruments, often tuning them in just intonation. The central figure of this movement was the American composer Lou Harrison[citation needed]. Unlike Partch, who often took scales directly from the harmonic series, the composers of the American Gamelan movement tended to draw scales from the just intonation lattice, in a manner like that used to construct Fokker periodicity blocks. Such scales often contain ratios with very large numbers, that are nevertheless related by simple intervals to other notes in the scale.


ratio interval odd-limit prime-limit audio
3/2 perfect fifth 3 3 About this sound Play
4/3 perfect fourth 3 3 About this sound Play
5/4 major third 5 5 About this sound Play
5/2 major tenth 5 5 About this sound Play
5/3 major sixth 5 5 About this sound Play
7/5 lesser septimal tritone 7 7 About this sound Play
10/7 greater septimal tritone 7 7 About this sound Play
9/8 major second 9 3 About this sound Play
27/16 Pythagorean major sixth 27 3 About this sound Play
81/64 ditone 81 3 About this sound Play
243/128 Pythagorean major seventh 243 3 About this sound Play

Beyond just intonation

In musical temperament, the simple ratios of just intonation are mapped to nearby irrational approximations. This operation, if successful, does not change the relative harmonic complexity of the different intervals, but it can complicate the use of the harmonic limit concept. Since some chords (such as the diminished seventh chord in 12-ET) have several valid tunings in just intonation, their harmonic limit may be ambiguous.

See also


  1. ^ Bart Hopkin, Musical Instrument Design: Practical Information for Instrument Design (Tucson, Ariz.: See Sharp Press. 1996), p. 160. ISBN 1884365086.
  2. ^ Harry Partch, Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments, second edition, enlarged (New York: Da Capo Press, 1974), p. 73. ISBN 0-306-71597-X; ISBN 0-306-80106-X (pbk reprint, 1979).
  3. ^ Paul Erlich, "The Forms of Tonality: A Preview". Some Music Theory from Paul Erlich (2001), pp. 1–3 (Accessed 29 May 2010).
  4. ^ David Wright, Mathematics and Music. Mathematical World 28. (Providence, R.I.: American Mathematical Society, 2009), p. 137. ISBN 0821848739.

External links

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Limit — A limit can be: * Limit (mathematics), including: ** Limit of a function ** Limit of a sequence ** One sided limit ** Limit superior and limit inferior ** Limit of a net ** Limit point ** Limit (category theory) * A constraint (mathematical,… …   Wikipedia

  • Music of Louisiana — Music of the United States AK AL AR AS AZ CA CO CT DC DE FL GA GU HI IA ID IL IN KS KY LA MA …   Wikipedia

  • Music of the Final Fantasy VII series — Music of Final Fantasy Final Fantasy I and II Final Fantasy III Final Fantasy IV Final Fantasy V Final Fantasy VI Final Fantasy VII series Final Fantasy VIII Final Fantasy IX Final Fantasy X Final Fantasy X 2 Final Fantasy …   Wikipedia

  • Music of the Mass — • Article covers exclusively the texts of the Mass (not seasonal) which receive a musical treatment Catholic Encyclopedia. Kevin Knight. 2006. Music of the Mass     Music of the Mass …   Catholic encyclopedia

  • Music of Final Fantasy XII — Music of Final Fantasy Final Fantasy I and II Final Fantasy III Final Fantasy IV Final Fantasy V Final Fantasy VI Final Fantasy VII series Final Fantasy VIII Final Fantasy IX Final Fantasy X Final Fantasy X 2 Final Fantasy XI …   Wikipedia

  • Music Saved My Life Tour — Promotional poster for 2010 tour Tour by Mary J. Blige Associated album Stronger with Each Tear Start date October …   Wikipedia

  • Music from Songwriter — Soundtrack album by Kris Kristofferson and Willie Nelson Released October 1984 …   Wikipedia

  • Music Idol — Format Reality/talent show Created by Simon Fuller Starring Judges (season 1): Jordanka Hristova, Slavi Trifonov, Gloria, Doni Judges (season 2): Villy Kazasian, Dimitar Kovachev Funky, Esil Duran, Lucy Diakovska …   Wikipedia

  • Music Inspired by Scarface — Compilation album by Various Artists Released September 16, 2003 Recorded Various Times Genre Hip hop …   Wikipedia

  • Music executive — A music executive or record executive is person within a record label who works in senior management, making executive decisions over the label s artists. Their role varies greatly but in essence, they can oversee one, or many, aspects of a… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.