Babinet's principle

Babinet's principle

In physics, Babinet's principle is a theorem concerning diffraction that states that the diffraction pattern from an opaque body is identical to that from a hole of the same size and shape except for the overall forward beam intensity.

Explanation

Let B be the original diffracting body, and B' its complement, i.e., the body that is transparent where B is opaque, and opaque where B is transparent. The sum of the radiation patterns caused by B and B' must be the same as the radiation pattern of the undisturbed beam. In places where the undisturbed beam would not have reached, this means that the amplitudes of the radiation patterns caused by B and B' must be opposite in phase, but equal in amplitude.

Diffraction patterns from apertures or bodies of known size and shape are compared with the pattern from the object to be measured. For instance, the size of red blood cells can be found by comparing their diffraction pattern with an array of small holes. One consequence of Babinet's principle is a paradox that in the diffraction limit, the radiation removed from the beam due to a particle is equal to twice the particle's cross section times the flux. This is because the amount of radiation absorbed or reflected is the same as the amount diffracted.

The principle is most often used in optics but it is also true for other forms of electromagnetic radiation and is, in fact, a general theorem of diffraction and holds true for all waves. Babinet's principle finds most use in its ability to detect "equivalence" in size and shape.

Demonstration experiment

The effect can be simply observed by using a laser - a source of collimated light. First place a thin (approx 0.1 mm) wire into the laser beam and observe the diffraction pattern. Then observe the diffraction pattern when the laser is shone through a narrow slit. The slit can be made either by using a laser printer or photocopier to print onto clear plastic film or by using a pin to draw a line on a piece of glass that has been smoked over a candle flame.

Radio Engineer Useful Formula

Babinet's Principle can be used to find complementary impedances. Babinet's Principle states (in optics) that when a field behind a screen with an opening is added to the field of a complementary structure (that is a shape covering the screen hole), then the sum is equal to the field where there is no screen. Demonstration can be found in any good optic or antenna book (such as Balanis, Krauss, Stuzman). The end result (corollary as a matter of fact) of practical interest for antenna engineers is the following formula:

Z_{metal} , Z_{slot} = eta^2 /4.

Where Zmetal and Zslot are input impedances of the metal and slot radiating pieces, and eta is the intrinsic impedance of the media in which the structure is immersed. In addition, Zslot is not only the impedance of the slot, but can be viewed as the complementary structure impedance (a dipole or loop in many cases). In addition, Zmetal is often referred to as Zscreen were the screen comes from the optical definition. It is noteworthy that the thin sheet or screen does not have to be metal, but rather any material that supports a vec{J} (current density vector) leading to an electric potential vec{A}. One issue with this equation, is that the screen must be relatively thin to the given wavelength (or range thereof). If it is not, modes can begin to form or fringing fields may no longer be negligible.

For a more general definition of Eta or intrinsic impedance, eta = sqrt{frac{mu}{epsilon .

Please note that Babinet's principle does not account for polarization. In 1946, H.G. Booker published "Slot Aerials and Their Relation to Complementary Wire Aerials" to extend Babinet's principle to account for polarization (otherwise known as Booker's Extension). This information is drawn from, as stated above, Balanis's third edition "Antenna Theory" textbook.

ee also

* Bistatic radar


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Jacques Babinet — (March 5 1794 in Lusignan, France ndash; October 21 1872 in Paris, France) was a French physicist, mathematician, and astronomer who is best known for his contributions to optics. Babinet started his studies at the Lycée Napoléon, but was… …   Wikipedia

  • Dual-band blade antenna — Contents 1 Introduction 2 Theory 2.1 Monopoles 2.1.1 Blade Antennas 2.2 Slot Antennas …   Wikipedia

  • Metal-mesh optical filters — are optical filters made from stacks of metal meshes and dielectric. They are used as part of an optical path to filter the incoming light to allow frequencies of interest to pass while reflecting other frequencies of light. Metal mesh filters… …   Wikipedia

  • List of physics topics A-E — NOTOC A B C D E F G H I J K L M N O P Q R S T U V W X Y ZList of physics topics F L >>AAb Am* Abbe number * Abbe, Ernst * Absolute zero * Accelerating universe * Acceleration * Acoustic theory * Action (physics) * Active laser medium * Adiabatic… …   Wikipedia

  • List of wave topics — This is a list of wave topics.0 ndash;9*21 cm lineA*Abbe prism *absorption spectrum *acoustics *Airy disc *Airy wave theory *Alfvén wave *Alpha waves *amphidromic point *amplitude *amplitude modulation *analog sound vs. digital sound *animal… …   Wikipedia

  • Dipole antenna — A schematic of a half wave dipole antenna connected to an unbalanced coaxial cable. Better practice is to connect the balanced dipole to the unbalanced line with a balun. A dipole antenna is a radio antenna that can be made of a simple wire, with …   Wikipedia

  • Bistatic radar — is the name given to a radar system which comprises a transmitter and receiver which are separated by a distance that is comparable to the expected target distance. Conversely, a radar in which the transmitter and receiver are collocated is… …   Wikipedia

  • Бистатический гидролокатор — гидролокатор, приёмник(и) и передатчик(и) которого разнесены в пространстве на расстояния, сравнимые с расстоянием до цели[1]. Содержание 1 Сра …   Википедия

  • Optical fiber — A bundle of optical fibers A TOSLINK fiber optic audio c …   Wikipedia

  • Science and the Church — • Dicsusses the relationship between the two subjects Catholic Encyclopedia. Kevin Knight. 2006. Science and the Church     Science and the Church      …   Catholic encyclopedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”