Electrical power industry

Electrical power industry

The electrical power industry provides the production and delivery of electrical power (electrical energy), often known as power, or electricity, in sufficient quantities to areas that need electricity through a grid. Many households and businesses need access to electricity, especially in developed nations, the demand being scarcer in developing nations. Demand for electricity is derived from the requirement for electricity in order to operate domestic appliances, office equipment, industrial machinery and provide sufficient energy for both domestic and commercial lighting, heating, cooking and industrial processes. Because of this aspect of the industry, it is viewed as a public utility as infrastructure.

The electrical power industry is commonly split up into four processes. These are electricity generation such as a power station, electric power transmission, electricity distribution and electricity retailing. In many countries, electric power companies own the whole infrastructure from generating stations to transmission and distribution infrastructure. For this reason, electric power is viewed as a natural monopoly. The industry is generally heavily regulated, often with price controls and is frequently government-owned and operated. The nature and state of market reform of the electricity market often determines whether electric companies are able to be involved in just some of these processes without having to own the entire infrastructure, or citizens choose which components of infrastructure to patronise. In countries where electricity provision is deregulated, end-users of electricity may opt for more costly green electricity.


All forms of electricity generation have positive and negative aspects. Technology will probably eventually declare the most preferred forms, but in a market economy, the options with less overall costs generally will be chosen above other sources. It is not clear yet which form can best meet the necessary energy demands or which process can best solve the demand for electricity. There are indications that renewable energy and distributed generation are becoming more viable in economic terms. A diverse mix of generation sources reduces the risks of electricity price spikes.


Although electricity had been known to be produced as a result of the chemical reactions that take place in an electrolytic cell since Alessandro Volta developed the voltaic pile in 1800, its production by this means was, and still is, expensive. In 1831, Michael Faraday devised a machine that generated electricity from rotary motion, but it took almost 50 years for the technology to reach a commercially viable stage. In 1878, in the US, Thomas Edison developed and sold a commercially viable replacement for gas lighting and heating using locally generated and distributed direct current electricity.

The world's first public electricity supply was provided in late 1881, when the streets of the Surrey town of Godalming in the UK were lit with electric light. This system was powered from a water wheel on the River Wey, which drove a Siemens alternator that supplied a number of arc lamps within the town. This supply scheme also provided electricity to a number of shops and premises.

Coinciding with this, in early 1882, Edison opened the world’s first steam-powered electricity generating station at Holborn Viaduct in London, where he had entered into an agreement with the City Corporation for a period of three months to provide street lighting. In time he had supplied a number of local consumers with electric light. The method of supply was direct current (DC).

It was later on in the year in September 1882 that Edison opened the Pearl Street Power Station in New York City and again it was a DC supply. It was for this reason that the generation was close to or on the consumer's premises as Edison had no means of voltage conversion. The voltage chosen for any electrical system is a compromise. Increasing the voltage reduces the current and therefore reduces resistive losses in the cable. Unfortunately it increases the danger from direct contact and also increases the required insulation thickness. Furthermore some load types were difficult or impossible to make for higher voltages.

Additionally, Robert Hammond, in December 1881, demonstrated the new electric light in the Sussex town of Brighton in the UK for a trial period. The ensuing success of this installation enabled Hammond to put this venture on both a commercial and legal footing, as a number of shop owners wanted to use the new electric light. Thus the Hammond Electricity Supply Co. was launched. Whilst the Godalming and Holborn Viaduct Schemes closed after a few years the Brighton Scheme continued on, and supply was in 1887 made available for 24 hours per day.

Nikola Tesla, who had worked for Edison for a short time and appreciated the electrical theory in a way that Edison did not, devised an alternative system using alternating current. Tesla realised that while doubling the voltage would halve the current and reduce losses by three-quarters, only an alternating current system allowed the transformation between voltage levels in different parts of the system. This allowed efficient high voltages for distribution where their risks could easily be mitigated by good design while still allowing fairly safe voltages to be supplied to the loads. He went on to develop the overall theory of his system, devising theoretical and practical alternatives for all of the direct current appliances then in use, and patented his novel ideas in 1887, in thirty separate patents. In 1888, Tesla's work came to the attention of George Westinghouse, who owned a patent for a type of transformer that could deal with high power and was easy to make. Westinghouse had been operating an alternating current lighting plant in Great Barrington, Massachusetts since 1886. While Westinghouse's system could use Edison's lights and had heaters, it did not have a motor. With Tesla and his patents, Westinghouse built a power system for a gold mine in Telluride, Colorado in 1891, with a water driven 100 horsepower (75 kW) generator powering a 100 horsepower (75 kW) motor over a 2.5-mile (4 km) power line. Almarian Decker finally invented the whole system of three-phase power generating in Redlands, California in 1893. Then, in a deal with General Electric, which Edison had been forced to sell, Westinghouse's company went on to construct a power station at the Niagara Falls, with three 5,000 horsepower (3.7 MW) Tesla generators supplying electricity to an aluminium smelter at Niagara and the town of Buffalo 22 miles (35 km) away. The Niagara power station commenced operation on April 20 1895.

Tesla's alternating current system remains the primary means of delivering electrical energy to consumers throughout the world. While high-voltage direct current (HVDC) is increasingly being used to transmit large quantities of electricity over long distances or to connect adjacent asynchronous power systems, the bulk of electricity generation, transmission, distribution and retailing takes place using alternating current.

Market reform

There has been a movement towards separating the monopoly parts of the industry, such as transmission and distribution sectors from the contestable sectors of generation and retailing across the world. This has occurred prominently since the reform of the electricity supply industry in England and Wales in 1990. In some countries, wholesale electricity markets operate, with generators and retailers trading electricity in a similar manner to shares and currency.

See also

*Rate Case
*AC power
*Circuit breaker
*Electricity generation
*Electric power transmission
*Electricity distribution
*Power (physics)
*Distributed generation
*Electricity retailing
*Auxiliary power
*Power control
*Power factor
*Emissions & Generation Resource Integrated Database (eGRID)
*Electrical wiring
*Earthing system
*Uninterruptible power supply
*Electrical generator
*Electrical bus
*New Zealand Electricity Market
*Electricity market
*Three-phase power
*Mains power plug
*Mains electricity ("household electricity" in American English)
*Meter Point Administration Number (unique UK supply number)
*North American Electric Reliability Corporation (NERC)
*Industrial power plug
*Power budget
*Power connector
*Power failure transfer
*Power margin
*Power plant
*Power supply
*Power system automation
*Reddy Kilowatt (U.S. electricity corporate logo)
*Skin effect


* Robert Lomas, "The Man Who Invented the Twentieth Century: Nikola Tesla, Forgotten Genius of Electricity", (1999) Headline, London ISBN 0-7472-7588-2.
* Daniel J. Shanefield, "Industrial Electronics for Engineers, Chemists, and Technicians", (2001) SciTech Pub, Norwich, NY ISBN 0-8155-1467-0
* "The Graphic", 12 November 1881.
* "Godalming Council Minutes", 1881 - 1884.
* P. Strange, "Early Electricity Supply in Britain: Chesterfield and Godalming", "IEEE Proceedings" (1979).
* D. G. Tucker, "Hydro-Electricity for Public Supply in Britain", "Industrial Archaeology Review", (1977).
* B. Bowers, "A History of Electric Light & Power", Peregrinus (1982).
* T. P. Hughes, "Networks of Power", Johns Hopkins Press London (1983).

External links

* [http://www.getenergyactive.org Learn about the electric power industry]
* [http://www.energychoices.co.uk/energy-switching-guide.html Compare Energy Providers]

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Power Corporation of Canada — Infobox Company company name =Power Corporation of Canada, Inc.| company | company slogan = company type = Public (tsx|POW) foundation = 1925 location = flagicon|Canada Montreal, Quebec, Canada founder = Jerry Sanders and John Carey key people =… …   Wikipedia

  • Electrical grid — Power Grid redirects here. For the board game, see Power Grid (board game). For other uses, see Grid (disambiguation). General layout of electricity networks. Voltages and depictions of electrical lines are typical for Germany and other European… …   Wikipedia

  • Power engineering — Power engineering, also called power systems engineering, is a subfield of electrical engineering that deals with the generation, transmission and distribution of electric power as well as the electrical devices connected to such systems… …   Wikipedia

  • Power systems CAD — refers to computer aided design (CAD) software tools that are used to design and simulate complex electrical power systems. Such power systems are typically found in mission critical facilities such as computer data centers, network operations… …   Wikipedia

  • Power line communication — or power line carrier (PLC), also known as power line digital subscriber line (PDSL), mains communication, power line telecom (PLT), power line networking (PLN), or broadband over power lines (BPL) are systems for carrying data on a conductor… …   Wikipedia

  • Power analytics — is a electrical power engineering software technology that ensures the reliable and energy efficient operation of exceptionally complex electrical power infrastructure, typically found in “mission critical” facilities. Such facilities… …   Wikipedia

  • Power over Ethernet — or PoE technology describes a system to transfer electrical power, along with data, to remote devices over standard twisted pair cable in an Ethernet network. This technology is useful for powering IP telephones, wireless LAN access points,… …   Wikipedia

  • Power cable — This article is about electric power conductors. For portable equipment, see power cord. A power cable is an assembly of two or more electrical conductors, usually held together with an overall sheath. The assembly is used for transmission of… …   Wikipedia

  • Power factor — For other uses, see Power factor (pistol). The power factor of an AC electric power system is defined as the ratio of the real power flowing to the load over the apparent power in the circuit,[1][2] and is a dimensionless number between 0 and 1… …   Wikipedia

  • Electrical wiring (UK) — The modern UK standards and regulations for electrical wiring no longer differ substantially from those in other European countries. However, there are a number of noteworthy national peculiarities, habits and traditions associated with domestic… …   Wikipedia