- Bruun's FFT algorithm
**Bruun's algorithm**is afast Fourier transform (FFT) algorithm based on an unusual recursivepolynomial -factorization approach, proposed for powers of two by G. Bruun in 1978 and generalized to arbitrary even composite sizes by H. Murakami in 1996. Because its operations involve only real coefficients until the last computation stage, it was initially proposed as a way to efficiently compute thediscrete Fourier transform (DFT) of real data. Bruun's algorithm has not seen widespread use, however, as approaches based on the ordinaryCooley-Tukey FFT algorithm have been successfully adapted to real data with at least as much efficiency. Furthermore, there is evidence that Bruun's algorithm may be intrinsically less accurate than Cooley-Tukey in the face of finite numerical precision (Storn, 1993).Nevertheless, Bruun's algorithm illustrates an alternative algorithmic framework that can express both itself and the Cooley-Tukey algorithm, and thus provides an interesting perspective on FFTs that permits mixtures of the two algorithms and other generalizations.

**A polynomial approach to the DFT**Recall that the DFT is defined by the formula:

:$X\_k\; =\; sum\_\{n=0\}^\{N-1\}\; x\_n\; e^\{-frac\{2pi\; i\}\{N\}\; nk\; \}qquadk\; =\; 0,dots,N-1.$

For convenience, let us denote the "N" roots of unity by ω

_{"N"}^{"n"}("n"=0.."N"-1)::$omega\_N^n\; =\; e^\{-frac\{2pi\; i\}\{N\}\; n\; \}$

and define the polynomial "x"("z") whose coefficients are "x"

_{"n"}::$x(z)\; =\; sum\_\{n=0\}^\{N-1\}\; x\_n\; z^n.$

The DFT can then be understood as a "reduction" of this polynomial; that is, "X"

_{"k"}is given by::$X\_k\; =\; x(omega\_N^k)\; =\; x(z)\; mod\; (z\; -\; omega\_N^k)$

where

**mod**(modulo ) denotes the polynomial remainder operation. The key to fast algorithms like Bruun's or Cooley-Tukey comes from the fact that one can perform this set of "N" remainder operations in recursive stages.**Recursive factorizations and FFTs**In order to compute the DFT, we need to evaluate the remainder of $x(z)$ modulo "N" degree-1 polynomials as described above. Evaluating these remainders one by one is equivalent to the evaluating the usual DFT formula directly, and requires O("N"

^{2}) operations. However, one can "combine" these remainders recursively to reduce the cost, using the following trick: if we want to evaluate $x(z)$ modulo two polynomials $U(z)$ and $V(z)$, we can first take the remainder modulo their product $U(z)$ $V(z)$, which reduces the degree of the polynomial $x(z)$ and makes subsequent modulo operations less computationally expensive.The product of all of the monomials $(z\; -\; omega\_N^k)$ for "k"=0.."N"-1 is simply $z^N-1$ (whose roots are clearly the "N" roots of unity). One then wishes to find a recursive factorization of $z^N-1$ into polynomials of few terms and smaller and smaller degree. To compute the DFT, one takes $x(z)$ modulo each level of this factorization in turn, recursively, until one arrives at the monomials and the final result. If each level of the factorization splits every polynomial into an O(1) (constant-bounded) number of smaller polynomials, each with an O(1) number of nonzero coefficients, then the modulo operations for that level take O("N") time; since there will be a logarithmic number of levels, the overall complexity is O ("N" log "N").

More explicitly, suppose for example that $z^N-1\; =\; F\_1(z)\; F\_2(z)\; F\_3(z)$, and that $F\_k(z)\; =\; F\_\{k,1\}(z)\; F\_\{k,2\}(z)$, and so on. The corresponding FFT algorithm would consist of first computing "x"

_{"k"}("z") = "x"("z") mod "F"_{"k"}("z"), then computing "x"_{"k","j"}("z") = "x"_{"k"}("z") mod "F"_{"k","j"}("z"), and so on, recursively creating more and more remainder polynomials of smaller and smaller degree until one arrives at the final degree-0 results.Moreover, as long as the polynomial factors at each stage are

relatively prime (which for polynomials means that they have no common roots), one can construct a dual algorithm by reversing the process with theChinese Remainder Theorem .**Cooley-Tukey as polynomial factorization**The standard decimation-in-frequency (DIF) radix-"r" Cooley-Tukey algorithm corresponds closely to a recursive factorization. For example, radix-2 DIF Cooley-Tukey factors $z^N-1$ into $F\_1\; =\; (z^\{N/2\}-1)$ and $F\_2\; =\; (z^\{N/2\}+1)$. These modulo operations reduce the degree of $x(z)$ by 2, which corresponds to dividing the problem size by 2. Instead of recursively factorizing $F\_2$ directly, though, Cooley-Tukey instead first computes "x"

_{2}("z" ω_{"N"}), shifting all the roots (by a "twiddle factor") so that it can apply the recursive factorization of $F\_1$ to both subproblems. That is, Cooley-Tukey ensures that all subproblems are also DFTs, whereas this is not generally true for an arbitrary recursive factorization (such as Bruun's, below).**The Bruun factorization**The basic Bruun algorithm for powers of two factorizes "z"

^{"N"}-1 recursively via the rules::$z^\{2M\}-1\; =\; (z^M\; -\; 1)\; (z^M\; +\; 1)\; ,$:$z^\{4M\}\; +\; az^\{2M\}\; +\; 1\; =\; (z^\{2M\}\; +\; sqrt\{2-a\}z^M+1)\; (z^\{2M\}\; -\; sqrt\{2-a\}z^M\; +\; 1)$

where "a" is a real constant with |"a"| ≤ 2. At the end of the recursion, for "M"=1, you are left with degree-2 polynomials that can then be evaluated modulo two roots ("z" - ω

_{"N"}^{"k"}) for each polynomial. Thus, at each recursive stage, all of the polynomials are factorized into two parts of half the degree, each of which has at most three nonzero terms, leading to an O ("N" log "N") algorithm for the FFT.Moreover, since all of these polynomials have purely real coefficients (until the very last stage), they automatically exploit the special case where the inputs "x"

_{"n"}are purely real to save roughly a factor of two in computation and storage. One can also take straightforward advantage of the case of real-symmetric data for computing thediscrete cosine transform (Chen and Sorensen, 1992).**Generalization to arbitrary radices**The Bruun factorization, and thus the Bruun FFT algorithm, was generalized to handle arbitrary "even" composite lengths, i.e. dividing the polynomial degree by an arbitrary "radix" (factor), as follows. First, we define a set of polynomials φ

_{"N",α}("z") for positive integers "N" and for α in[0,1) by::$phi\_\{N,\; alpha\}(z)\; =\; left\{\; egin\{matrix\}z^\{2N\}\; -\; 2\; cos\; (2\; pi\; alpha)\; z^N\; +\; 1\; mbox\{if\; \}\; 0\; alpha\; 1\; \backslash \; \backslash z^\{2N\}\; -\; 1\; mbox\{if\; \}\; alpha\; =\; 0end\{matrix\}\; ight.$

Note that all of the polynomials that appear in the Bruun factorization above can be written in this form. These polynomials can be recursively factorized for a factor (radix) "r" via:

:$phi\_\{rM,\; alpha\}(z)\; =\; left\{\; egin\{matrix\}prod\_\{ell=0\}^\{r-1\}\; phi\_\{M,(alpha+ell)/r\}\; mbox\{if\; \}\; 0\; alpha\; leq\; 0.5\; \backslash \; \backslash prod\_\{ell=0\}^\{r-1\}\; phi\_\{M,(1-alpha+ell)/r\}\; mbox\{if\; \}\; 0.5\; alpha\; 1\; \backslash \; \backslash prod\_\{ell=0\}^\{r-1\}\; phi\_\{M,ell/(2r)\}\; mbox\{if\; \}\; alpha\; =\; 0$

end{matrix} ight.

**References*** Georg Bruun, "z"-Transform DFT filters and FFTs," "IEEE Trans. on Acoustics, Speech and Signal Processing" (ASSP)

**26**(1), 56-63 (1978).

* H. J. Nussbaumer, "Fast Fourier Transform and Convolution Algorithms" (Springer-Verlag: Berlin, 1990).

* Yuhang Wu, "New FFT structures based on the Bruun algorithm," "IEEE Trans. ASSP"**38**(1), 188-191 (1990)

* Jianping Chen and Henrik Sorensen, "An efficient FFT algorithm for real-symmetric data," "Proc. ICASSP"**5**, 17-20 (1992).

* Rainer Storn, "Some results in fixed point error analysis of the Bruun-FTT ["sic"] algorithm," "IEEE Trans. Signal Processing"**41**(7), 2371-2375 (1993).

* Hideo Murakami, "Real-valued decimation-in-time and decimation-in-frequency algorithms," "IEEE Trans. Circuits Syst. II: Analog and Digital Sig. Proc."**41**(12), 808-816 (1994).

* Hideo Murakami, "Real-valued fast discrete Fourier transform and cyclic convolution algorithms of highly composite even length," "Proc. ICASSP"**3**, 1311-1314 (1996).

* Shashank Mittal, Md. Zafar Ali Khan, M. B. Srinivas, "A Comparative Study of Different FFT Architectures for Software Defined Radio", "Lecture Notes in Computer Science"**4599**("Embedded Computer Systems: Architectures, Modeling, and Simulation"), 375-384 (2007). Proc. 7th Intl. Workshop, SAMOS 2007 (Samos, Greece, July 16-19, 2007).

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**Fast Fourier transform**— A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier transform (DFT) and its inverse. There are many distinct FFT algorithms involving a wide range of mathematics, from simple complex number arithmetic to group … Wikipedia**List of numerical analysis topics**— This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra … Wikipedia**List of algorithms**— The following is a list of the algorithms described in Wikipedia. See also the list of data structures, list of algorithm general topics and list of terms relating to algorithms and data structures.If you intend to describe a new algorithm,… … Wikipedia**Список алгоритмов**— Эта страница информационный список. Основная статья: Алгоритм Ниже приводится список алгоритмов, группированный по категориям. Более детальные сведения приводятся в списке структур данных и … Википедия**List of mathematics articles (B)**— NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… … Wikipedia**Discrete Hartley transform**— A discrete Hartley transform (DHT) is a Fourier related transform of discrete, periodic data similar to the discrete Fourier transform (DFT), with analogous applications in signal processing and related fields. Its main distinction from the DFT… … Wikipedia**Schnelle Fourier-Transformation**— Eine schnelle Fourier Transformation (englisch fast Fourier transform, daher meist FFT abgekürzt) ist ein Algorithmus zur effizienten Berechnung der Werte einer diskreten Fourier Transformation (DFT). Bei solchen Algorithmen handelt es sich… … Deutsch Wikipedia**Fast-Fourier-Transformation**— Die schnelle Fourier Transformation (englisch fast Fourier transform, daher meist FFT abgekürzt) ist ein Algorithmus zur effizienten Berechnung der Werte einer diskreten Fourier Transformation (DFT). Bei dem Algorithmus handelt es sich um ein… … Deutsch Wikipedia**Fast Fourier-Transformation**— Die schnelle Fourier Transformation (englisch fast Fourier transform, daher meist FFT abgekürzt) ist ein Algorithmus zur effizienten Berechnung der Werte einer diskreten Fourier Transformation (DFT). Bei dem Algorithmus handelt es sich um ein… … Deutsch Wikipedia**Schnelle Fouriertransformation**— Die schnelle Fourier Transformation (englisch fast Fourier transform, daher meist FFT abgekürzt) ist ein Algorithmus zur effizienten Berechnung der Werte einer diskreten Fourier Transformation (DFT). Bei dem Algorithmus handelt es sich um ein… … Deutsch Wikipedia