 Differential operator

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation, accepting a function and returning another (in the style of a higherorder function in computer science).
This article considers only linear operators, even though the Schwarzian derivative is a prominent example of a nonlinear operator.
Contents
Notations
The most commonly used differential operator is the action of taking the derivative itself. Common notations for this operator include:
 where the variable with respect to which one is differentiating is clear, and
 where the variable is declared explicitly.

 , is an alternative notation.
First derivatives are signified as above, but when taking higher, nth derivatives, the following alterations are useful:
For a function f of an argument x, the derivative operator is sometimes given as either of the following:
The D notation's use and creation is credited to Oliver Heaviside, who considered differential operators of the form
in his study of differential equations.
One of the most frequently seen differential operators is the Laplacian operator, defined by
Another differential operator is the Θ operator, or theta operator, defined by^{[1]}
This is sometimes also called the homogeneity operator, because its eigenfunctions are the monomials in z:
In n variables the homogeneity operator is given by
As in one variable, the eigenspaces of Θ are the spaces of homogeneous polynomials.
Adjoint of an operator
See also: Hermitian adjointGiven a linear differential operator T
the adjoint of this operator is defined as the operator T ^{*} such that
where the notation is used for the scalar product or inner product. This definition therefore depends on the definition of the scalar product.
Formal adjoint in one variable
In the functional space of square integrable functions, the scalar product is defined by
If one moreover adds the condition that f or g vanishes for and , one can also define the adjoint of T by
This formula does not explicitly depend on the definition of the scalar product. It is therefore sometimes chosen as a definition of the adjoint operator. When T ^{*} is defined according to this formula, it is called the formal adjoint of T.
A (formally) selfadjoint operator is an operator equal to its own (formal) adjoint.
Several variables
If Ω is a domain in R^{n}, and P a differential operator on Ω, then the adjoint of P is defined in L^{2}(Ω) by duality in the analogous manner:
for all smooth L^{2} functions f, g. Since smooth functions are dense in L^{2}, this defines the adjoint on a dense subset of L^{2}: P^{*} is a denselydefined operator.
Example
The Sturm–Liouville operator is a wellknown example of formal selfadjoint operator. This secondorder linear differential operator L can be written in the form
This property can be proven using the formal adjoint definition above.
This operator is central to Sturm–Liouville theory where the eigenfunctions (analogues to eigenvectors) of this operator are considered.
Properties of differential operators
Differentiation is linear, i.e.,
where f and g are functions, and a is a constant.
Any polynomial in D with function coefficients is also a differential operator. We may also compose differential operators by the rule
Some care is then required: firstly any function coefficients in the operator D_{2} must be differentiable as many times as the application of D_{1} requires. To get a ring of such operators we must assume derivatives of all orders of the coefficients used. Secondly, this ring will not be commutative: an operator gD isn't the same in general as Dg. In fact we have for example the relation basic in quantum mechanics:
The subring of operators that are polynomials in D with constant coefficients is, by contrast, commutative. It can be characterised another way: it consists of the translationinvariant operators.
The differential operators also obey the shift theorem.
Several variables
The same constructions can be carried out with partial derivatives, differentiation with respect to different variables giving rise to operators that commute (see symmetry of second derivatives).
Coordinateindependent description
In differential geometry and algebraic geometry it is often convenient to have a coordinateindependent description of differential operators between two vector bundles. Let E and F be two vector bundles over a differentiable manifold M. An Rlinear mapping of sections P : Γ(E) → Γ(F) is said to be a kthorder linear differential operator if it factors through the jet bundle J^{k}(E). In other words, there exists a linear mapping of vector bundles
such that
where j^{k}: Γ(E) → Γ(J^{k}(E)) is the prolongation that associates to any section of E its kjet.
This just means that for a given sections s of E, the value of P(s) at a point x ∈ M is fully determined by the kthorder infinitesimal behavior of s in x. In particular this implies that P(s)(x) is determined by the germ of s in x, which is expressed by saying that differential operators are local. A foundational result is the Peetre theorem showing that the converse is also true: any (linear) local operator is differential.
Relation to commutative algebra
An equivalent, but purely algebraic description of linear differential operators is as follows: an Rlinear map P is a kthorder linear differential operator, if for any k + 1 smooth functions we have
Here the bracket is defined as the commutator
This characterization of linear differential operators shows that they are particular mappings between modules over a commutative algebra, allowing the concept to be seen as a part of commutative algebra.
Examples
 In applications to the physical sciences, operators such as the Laplace operator play a major role in setting up and solving partial differential equations.
 In differential topology the exterior derivative and Lie derivative operators have intrinsic meaning.
 In abstract algebra, the concept of a derivation allows for generalizations of differential operators which do not require the use of calculus. Frequently such generalizations are employed in algebraic geometry and commutative algebra. See also jet (mathematics).
See also
 Difference operator
 Delta operator
 Elliptic operator
 Fractional calculus
 Invariant differential operator
 Differential calculus over commutative algebras
 Lagrangian system
References
 ^ E. W. Weisstein. "Theta Operator". http://mathworld.wolfram.com/ThetaOperator.html. Retrieved 20090612.
Categories: Calculus
 Multivariable calculus
 Differential operators
Wikimedia Foundation. 2010.
Look at other dictionaries:
differential operator — diferencialinis operatorius statusas T sritis fizika atitikmenys: angl. differential operator vok. Differentialoperator, m rus. дифференциальный оператор, m pranc. opérateur différentiel, m … Fizikos terminų žodynas
differential operator — Math. a function, usually expressed as a polynomial, that indicates linear combinations of the derivatives of the expression on which it operates. * * * In mathematics, any combination of derivatives applied to a function. It takes the form of a… … Universalium
differential operator — noun mathematics : a prescribed combination or sequence of operations involving differentiation … Useful english dictionary
Pseudodifferential operator — In mathematical analysis a pseudo differential operator is an extension of the concept of differential operator. Pseudo differential operators are used extensively in the theory of partial differential equations and quantum field theory.… … Wikipedia
Symbol of a differential operator — In mathematics, differential operators have symbols, which are roughly speaking the algebraic part of the terms involving the most derivatives.Formal definitionLet E 1, E 2 be vector bundles over a closed manifold X , and suppose: P: C^infty(E 1) … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Operator (mathematics) — This article is about operators in mathematics. For other uses, see Operator (disambiguation). In basic mathematics, an operator is a symbol or function representing a mathematical operation. In terms of vector spaces, an operator is a mapping… … Wikipedia
Differential ideal — In the theory of differential forms, a differential ideal I is an algebraic ideal in the ring of smooth differential forms on a smooth manifold, in other words a graded ideal in the sense of ring theory, that is further closed under exterior… … Wikipedia
differential — differentially, adv. /dif euh ren sheuhl/, adj. 1. of or pertaining to difference or diversity. 2. constituting a difference; distinguishing; distinctive: a differential feature. 3. exhibiting or depending upon a difference or distinction. 4.… … Universalium
Operator theory — In mathematics, operator theory is the branch of functional analysis that focuses on bounded linear operators, but which includes closed operators and nonlinear operators. Operator theory also includes the study of algebras of operators. Contents … Wikipedia