Differential operator

Differential operator

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation, accepting a function and returning another (in the style of a higher-order function in computer science).

This article considers only linear operators, even though the Schwarzian derivative is a prominent example of a non-linear operator.



The most commonly used differential operator is the action of taking the derivative itself. Common notations for this operator include:

{d \over dx}
D,\, where the variable with respect to which one is differentiating is clear, and
D_x,\, where the variable is declared explicitly.
\partial_x, is an alternative notation.

First derivatives are signified as above, but when taking higher, nth derivatives, the following alterations are useful:

d^n \over dx^n

For a function f of an argument x, the derivative operator is sometimes given as either of the following:


The D notation's use and creation is credited to Oliver Heaviside, who considered differential operators of the form

\sum_{k=0}^n c_k D^k

in his study of differential equations.

One of the most frequently seen differential operators is the Laplacian operator, defined by

\Delta=\nabla^{2}=\sum_{k=1}^n {\partial^2\over \partial x_k^2}.

Another differential operator is the Θ operator, or theta operator, defined by[1]

\Theta = z {d \over dz}.

This is sometimes also called the homogeneity operator, because its eigenfunctions are the monomials in z:

\Theta (z^k) = k z^k,\quad k=0,1,2,\dots

In n variables the homogeneity operator is given by

\Theta = \sum_{k=1}^n x_k \frac{\partial}{\partial x_k}.

As in one variable, the eigenspaces of Θ are the spaces of homogeneous polynomials.

Adjoint of an operator

Given a linear differential operator T

Tu = \sum_{k=0}^n a_k(x) D^k u

the adjoint of this operator is defined as the operator T * such that

\langle Tu,v \rangle = \langle u, T^*v \rangle

where the notation \langle\cdot,\cdot\rangle is used for the scalar product or inner product. This definition therefore depends on the definition of the scalar product.

Formal adjoint in one variable

In the functional space of square integrable functions, the scalar product is defined by

\langle f, g \rangle = \int_a^b f(x) \, \overline{g(x)} \,dx.

If one moreover adds the condition that f or g vanishes for x \to a and x \to b, one can also define the adjoint of T by

T^*u = \sum_{k=0}^n (-1)^k D^k [a_k(x)u].\,

This formula does not explicitly depend on the definition of the scalar product. It is therefore sometimes chosen as a definition of the adjoint operator. When T * is defined according to this formula, it is called the formal adjoint of T.

A (formally) self-adjoint operator is an operator equal to its own (formal) adjoint.

Several variables

If Ω is a domain in Rn, and P a differential operator on Ω, then the adjoint of P is defined in L2(Ω) by duality in the analogous manner:

\langle f, P^* g\rangle_{L^2(\Omega)} = \langle P f, g\rangle_{L^2(\Omega)}

for all smooth L2 functions f, g. Since smooth functions are dense in L2, this defines the adjoint on a dense subset of L2: P* is a densely-defined operator.


The Sturm–Liouville operator is a well-known example of formal self-adjoint operator. This second-order linear differential operator L can be written in the form

Lu = -(pu')'+qu=-(pu''+p'u')+qu=-pu''-p'u'+qu=(-p) D^2 u +(-p') D u + (q)u.\;\!

This property can be proven using the formal adjoint definition above.

L^*u & {} = (-1)^2 D^2 [(-p)u] + (-1)^1 D [(-p')u] + (-1)^0 (qu) \\
 & {} = -D^2(pu) + D(p'u)+qu \\
 & {} = -(pu)''+(p'u)'+qu \\
 & {} = -p''u-2p'u'-pu''+p''u+p'u'+qu \\
 & {} = -p'u'-pu''+qu \\
 & {} = -(pu')'+qu \\
 & {} = Lu

This operator is central to Sturm–Liouville theory where the eigenfunctions (analogues to eigenvectors) of this operator are considered.

Properties of differential operators

Differentiation is linear, i.e.,

D(f+g) = (Df)+(Dg)\,
D(af) = a(Df)\,

where f and g are functions, and a is a constant.

Any polynomial in D with function coefficients is also a differential operator. We may also compose differential operators by the rule

(D_1 \circ D_2)(f) = D_1(D_2(f)).\,

Some care is then required: firstly any function coefficients in the operator D2 must be differentiable as many times as the application of D1 requires. To get a ring of such operators we must assume derivatives of all orders of the coefficients used. Secondly, this ring will not be commutative: an operator gD isn't the same in general as Dg. In fact we have for example the relation basic in quantum mechanics:

Dx - xD = 1.\,

The subring of operators that are polynomials in D with constant coefficients is, by contrast, commutative. It can be characterised another way: it consists of the translation-invariant operators.

The differential operators also obey the shift theorem.

Several variables

The same constructions can be carried out with partial derivatives, differentiation with respect to different variables giving rise to operators that commute (see symmetry of second derivatives).

Coordinate-independent description

In differential geometry and algebraic geometry it is often convenient to have a coordinate-independent description of differential operators between two vector bundles. Let E and F be two vector bundles over a differentiable manifold M. An R-linear mapping of sections P : Γ(E) → Γ(F) is said to be a kth-order linear differential operator if it factors through the jet bundle Jk(E). In other words, there exists a linear mapping of vector bundles

i_P: J^k(E) \rightarrow F\,

such that

P = i_P\circ j^k

where jk: Γ(E) → Γ(Jk(E)) is the prolongation that associates to any section of E its k-jet.

This just means that for a given sections s of E, the value of P(s) at a point x ∈ M is fully determined by the kth-order infinitesimal behavior of s in x. In particular this implies that P(s)(x) is determined by the germ of s in x, which is expressed by saying that differential operators are local. A foundational result is the Peetre theorem showing that the converse is also true: any (linear) local operator is differential.

Relation to commutative algebra

An equivalent, but purely algebraic description of linear differential operators is as follows: an R-linear map P is a kth-order linear differential operator, if for any k + 1 smooth functions f_0,\ldots,f_k \in C^\infty(M) we have


Here the bracket [f,P]:\Gamma(E)\rightarrow \Gamma(F) is defined as the commutator

[f,P](s)=P(f\cdot s)-f\cdot P(s).\,

This characterization of linear differential operators shows that they are particular mappings between modules over a commutative algebra, allowing the concept to be seen as a part of commutative algebra.


See also


  1. ^ E. W. Weisstein. "Theta Operator". http://mathworld.wolfram.com/ThetaOperator.html. Retrieved 2009-06-12. 

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • differential operator — diferencialinis operatorius statusas T sritis fizika atitikmenys: angl. differential operator vok. Differentialoperator, m rus. дифференциальный оператор, m pranc. opérateur différentiel, m …   Fizikos terminų žodynas

  • differential operator — Math. a function, usually expressed as a polynomial, that indicates linear combinations of the derivatives of the expression on which it operates. * * * In mathematics, any combination of derivatives applied to a function. It takes the form of a… …   Universalium

  • differential operator — noun mathematics : a prescribed combination or sequence of operations involving differentiation …   Useful english dictionary

  • Pseudo-differential operator — In mathematical analysis a pseudo differential operator is an extension of the concept of differential operator. Pseudo differential operators are used extensively in the theory of partial differential equations and quantum field theory.… …   Wikipedia

  • Symbol of a differential operator — In mathematics, differential operators have symbols, which are roughly speaking the algebraic part of the terms involving the most derivatives.Formal definitionLet E 1, E 2 be vector bundles over a closed manifold X , and suppose: P: C^infty(E 1) …   Wikipedia

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • Operator (mathematics) — This article is about operators in mathematics. For other uses, see Operator (disambiguation). In basic mathematics, an operator is a symbol or function representing a mathematical operation. In terms of vector spaces, an operator is a mapping… …   Wikipedia

  • Differential ideal — In the theory of differential forms, a differential ideal I is an algebraic ideal in the ring of smooth differential forms on a smooth manifold, in other words a graded ideal in the sense of ring theory, that is further closed under exterior… …   Wikipedia

  • differential — differentially, adv. /dif euh ren sheuhl/, adj. 1. of or pertaining to difference or diversity. 2. constituting a difference; distinguishing; distinctive: a differential feature. 3. exhibiting or depending upon a difference or distinction. 4.… …   Universalium

  • Operator theory — In mathematics, operator theory is the branch of functional analysis that focuses on bounded linear operators, but which includes closed operators and nonlinear operators. Operator theory also includes the study of algebras of operators. Contents …   Wikipedia