Philosophy of thermal and statistical physics


Philosophy of thermal and statistical physics

The philosophy of thermal and statistical physics is one of the major subdisciplines of the philosophy of physics. Its subject matter is classical thermodynamics, statistical mechanics, and related theories. Its central questions include: What is entropy, and what does the second law of thermodynamics say about it? Does either thermodynamics or statistical mechanics contain an element of time-irreversibility? If so, what is its connection with the arrow of time?

What is thermodynamics?

Thermodynamics is the study of the macroscopic behaviour of physical systems under the influence of exchange of work and heat with other systems or their environment. It is not concerned with the microscopic properties of these systems, such as the movements of atoms.

At the very heart of contemporary thermodynamics lies the idea of thermodynamic equilibrium, a state in which no macroscopic properties of the system change with time. In orthodox versions of thermodynamics, properties such as temperature and entropy are defined for equilibrium states only. The idea that all thermodynamic systems in a fixed volume will reach a state of equilibrium after an infinite time, which is central to thermodynamics, has recently been dubbed the "minus first law of thermodynamics".

Thermodynamics as a theory of principle

Traditionally, thermodynamics has often been described as a "theory of principle". This is a theory in which a few empirical generalisations are taken for granted, and from them the rest of the theory is deduced. According to this view, there is a strong correspondence between three empirical facts and three theoretical laws that lie at the core of the classical theories: the first three laws of thermodynamics.

The zeroth law of thermodynamics

Two systems are said to be in "thermal equilibrium" when 1) both of the systems are in a state of equilibrium, and 2) they remain so when they are brought into contact, where 'contact' is meant to imply the possibility of exchanging heat, but not work or particles. It is an empirical fact, the so-called "zeroth law of thermodynamics", that thermal equilibrium is transitive. This means that whenever system A is in thermal equilibrium with system B, and system B is in thermal equilibrium with system C, then system A and system C are also in thermal equilibrium. According to Max Planck, who wrote an influential textbook on thermodynamics, and many other authors, this empirical principle shows that we can define the "temperature function" so central to our everyday conception of heat.

The first law of thermodynamics

In simplest terms, the first law states that the internal energy level of an isolated system is a constant. In the context of a non-isolated system, then, this law requires that when there is a change in the amount of energy from one equilibrium state to another, that change is equal to the heat transfer into the system minus the work done by the system. Energy in minus energy out equals change in energy level.

"Energy can be neither created nor destroyed"

The second law of thermodynamics

In a general sense, the second law says that temperature differences between systems in contact with each other tend to even out and that work can be obtained from these non-equilibrium differences, but that loss of heat occurs, in the form of entropy, when work is done. This law follows simply from statistics: if a physical system is given (is allowed to occupy) new energy states which are equivalent to the existing states (say, a gas is expanding into a larger volume), then the system will occupy "new" states on equal footing with the existing ("old") ones. This is the central postulate of statistical mechanics - that equivalent energy states are indistinguishable. Thus, as the number of energy states are increasing, the energy of the system will be spread among more and more states (which means that the entropy of the system will increase).

Some have put these latter two laws thus: "The first law says you can't win, the second law says you can't even break even."

Interpretations

There are various ways of understanding this second law. There is, for example, "Boltzmann's H-theorem", an interpretation associated with Ludwig Boltzmann (1844 - 1906).

Maxwell's Demon

James Clerk Maxwell, in an essay in 1871 called the "Theory of Heat," proposed a thought experiment to show why the second law might just be a temporary condition, why entropy might be beatable. This thought experiment was later called Maxwell's Demon.

"If we conceive a being whose faculties are so sharpened that he can follow every molecule in its course, such a being, whose attributes are still essentially finite as our own, would be able to do what is at present impossible for us," he wrote.

He went on to explain that the demon working at a microscopic level, could operate a gate (presumably of low-friction construction) allowing only swift molecules to pass through it. In this way, the demon's work would result in slow molecules (i.e. cold) on one side of the gated barrier, and heat on the other side. Yet movement from uniformity of temperature to a split of hot/cold is in violation of the second law. It follows, Maxwell thought, that the law is just a temporary state of human incompetence. We're not at present capable of treating separately of each molecule that comes by, that's all!

In the 20th century, advances in information theory and thermodynamics eventually determined that Maxwell's demon could not actually reverse entropy, thus disproving Maxwell's approach to violating the second law.

References

* J. Uffink, "Bluff your way in the second law of thermodynamics," Studies in History and Philosophy of Modern Physics, 32(3), 305-394 (2001) http://philsci-archive.pitt.edu/archive/00000313/

* P. Valev, "The Law of Self-Acting Machines and Irreversible Processes with reversible Replicas," in D. Sheehan (ed.), Proceedings of the First International conference on Quantum Limits to the Second Law, American Institute of Physics, 430 - 435 (2002): http://content.aip.org/APCPCS/v643/i1/430_1.html

See also

* Thermodynamics
* Maximum entropy thermodynamics - Bayesian interpretation of thermodynamics, entropy and the Second Law


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Thermal physics — is the combined study of thermodynamics, statistical mechanics, and kinetic theory. This umbrella subject is typically designed for physics students and functions to provide a general introduction to each of three core heat related subjects.… …   Wikipedia

  • Philosophy of physics — is the study of the fundamental, philosophical questions underlying modern physics, the study of matter and energy and how they interact. The main questions concern the nature of space and time, atoms and atomism. Also the predictions of… …   Wikipedia

  • Philosophy of information — The philosophy of information (PI) is the area of research that studies conceptual issues arising at the intersection of computer science, information technology, and philosophy. It includes: [Luciano Floridi,… …   Wikipedia

  • Philosophy of mind — A phrenological mapping[1] of the brain. Phrenology was among the first attempts to correlate mental functions with specific parts of the brain. Philosophy of mind is a branch of philosophy that studies the nature of the mind, mental even …   Wikipedia

  • Statistical mechanics — is the application of probability theory, which includes mathematical tools for dealing with large populations, to the field of mechanics, which is concerned with the motion of particles or objects when subjected to a force.Statistical mechanics …   Wikipedia

  • physics — /fiz iks/, n. (used with a sing. v.) the science that deals with matter, energy, motion, and force. [1580 90; see PHYSIC, ICS] * * * I Science that deals with the structure of matter and the interactions between the fundamental constituents of… …   Universalium

  • Thermal expansion — Thermodynamics …   Wikipedia

  • List of philosophy topics (I-Q) — II and thou I Ching I Ching I proposition I Thou I Thou relationshipIaIamblichus (philosopher)IbYahya Ibn Adi Yahya Ibn Adi Ibn al Arabi Muhyi al Din Ibn al Arabi Abu Bakr Ibn Bajja Abu Bakr Ibn Bājja Abu Bakr Muhammad Ibn Yahya Ibn as Say igh… …   Wikipedia

  • Relationship between religion and science — Part of a series on Science …   Wikipedia

  • Nature (philosophy) — Nature is a concept with two major sets of inter related meanings, referring on the one hand to the things which are natural, or subject to the normal working of laws of nature , or on the other hand to the essential properties and causes of… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.