 Material properties (thermodynamics)

The thermodynamic properties of materials are intensive thermodynamic parameters which are specific to a given material. Each is directly related to a second order differential of a thermodynamic potential. Examples for a simple 1component system are:
 Compressibility (or its inverse, the bulk modulus)

 Isothermal compressibility
 Adiabatic compressibility
 Specific heat (Note  the extensive analog is the heat capacity)

 Specific heat at constant pressure
 Specific heat at constant volume
 Coefficient of thermal expansion
where P is pressure, V is volume, T is temperature, S is entropy, and N is the number of particles.
For a single component system, only three second derivatives are needed in order to derive all others, and so only three material properties are needed to derive all others. For a single component system, the "standard" three parameters are the isothermal compressibility β_{T}, the specific heat at constant pressure c_{P}, and the coefficient of thermal expansion α.
For example, the following equations are true:
The three "standard" properties are in fact the three possible second derivatives of the Gibbs free energy with respect to temperature and pressure.
Sources
The Dortmund Data Bank is a factual data bank for thermodynamic and thermophysical data.
See thermodynamic databases for pure substances.
References
Callen, Herbert B. (1985). Thermodynamics and an Introduction to Thermostatistics (2nd Ed. ed.). New York: John Wiley & Sons. ISBN 0471862568.
Categories: Thermodynamics
 Thermodynamics stubs
Wikimedia Foundation. 2010.
Look at other dictionaries:
Thermodynamics — Annotated color version of the original 1824 Carnot heat engine showing the hot body (boiler), working body (system, steam), and cold body (water), the letters labeled according to the stopping points in Carnot cycle … Wikipedia
thermodynamics — thermodynamicist, n. /therr moh duy nam iks/, n. (used with a sing. v.) the science concerned with the relations between heat and mechanical energy or work, and the conversion of one into the other: modern thermodynamics deals with the properties … Universalium
Properties and features of black holes — According to the No Hair theorem a black hole has only three independent physical properties: mass, charge and angular momentum. [citationlast=Heusler first=M. year=1998 title=Stationary Black Holes: Uniqueness and Beyond journal=Living Rev … Wikipedia
Nonequilibrium thermodynamics — Thermodynamics … Wikipedia
Endoreversible thermodynamics — Thermodynamics … Wikipedia
Third law of thermodynamics — Thermodynamics … Wikipedia
Conjugate variables (thermodynamics) — For a more general mathematical discussion, see Conjugate variables. Thermodynamics … Wikipedia
Failure theory (material) — v · d · e Materials failure modes Buckling · Corro … Wikipedia
Critical point (thermodynamics) — Carbon dioxide creating a fog when cooling from supercritical to critical temperature In physical chemistry, thermodynamics, chemistry and condensed matter physics, a critical point, also called a critical state, specifies the conditions… … Wikipedia
Second law of thermodynamics — The second law of thermodynamics is an expression of the universal law of increasing entropy, stating that the entropy of an isolated system which is not in equilibrium will tend to increase over time, approaching a maximum value at… … Wikipedia