- Yield (engineering)
The

**yield strength**or**yield point**of amaterial is defined inengineering andmaterials science as the stress at which a material begins to deform plastically. Prior to the yield point the material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed some fraction of the deformation will be permanent and non-reversible. In the three-dimensional space of the principal stresses ($sigma\_1,\; sigma\_2\; ,\; sigma\_3$), an infinite number of yield points form together ayield surface .Knowledge of the yield point is vital when designing a component since it generally represents an upper limit to the load that can be applied. It is also important for the control of many materials production techniques such as

forging , rolling, or pressing. In structural engineering, this is a soft failure mode which does not normally causecatastrophic failure orultimate failure unless it acceleratesbuckling .**Definition**

1: True elastic limit

2: Proportionality limit

3: Elastic limit

4: Offset yield strength**Yield criterion**A yield criterion, often expressed as yield surface, or yield locus, is an hypothesis concerning the limit of elasticity under any combination of stresses. There are two interpretations of yield criterion: one is purely mathematical in taking a statistical approach while other models attempt to provide a justification based on established physical principles. Since stress and strain are

tensor qualities they can be described on the basis of three principal directions, in the case of stress these are denoted by $sigma\_1\; ,!$, $sigma\_2\; ,!$ and $sigma\_3\; ,!$.The following represent the most common yield criterion as applied to an isotropic material (uniform properties in all directions). Other equations have been proposed or are used in specialist situations.

**Isotropic yield criteria****Maximum Principal Stress Theory**- Yield occurs when the largest principal stress exceeds the uniaxial tensile yield strength. Although this criterion allows for a quick and easy comparison with experimental data it is rarely suitable for design purposes.: $sigma\_1\; le\; sigma\_y\; ,!$

**Maximum Principal Strain Theory**- Yield occurs when the maximum principal strain reaches the strain corresponding to the yield point during a simple tensile test. In terms of the principal stresses this is determined by the equation:: $sigma\_1\; -\; u(sigma\_2\; +\; sigma\_3)\; le\; sigma\_y.\; ,!$

**Maximum Shear Stress Theory**- Also known as theTresca yield criterion , after the French scientistHenri Tresca . This assumes that yield occurs when the shear stress $au!$ exceeds the shear yield strength $au\_y!$:: $au\; =\; frac\{sigma\_1-sigma\_3\}\{2\}\; le\; au\_\{ys\}.\; ,!$

**Total Strain Energy Theory**- This theory assumes that the stored energy associated with elastic deformation at the point of yield is independent of the specific stress tensor. Thus yield occurs when the strain energy per unit volume is greater than the strain energy at the elastic limit in simple tension. For a 3-dimensional stress state this is given by:: $sigma\_\{1\}^2\; +\; sigma\_\{2\}^2\; +\; sigma\_\{3\}^2\; -\; 2\; u\; (sigma\_1\; sigma\_2\; +\; sigma\_2\; sigma\_3\; +\; sigma\_1\; sigma\_3)\; le\; sigma\_y^2.\; ,!$

**Distortion Energy Theory**- This theory proposes that the total strain energy can be separated into two components: the "volumetric" (hydrostatic ) strain energy and the "shape" (distortion or shear) strain energy. It is proposed that yield occurs when the distortion component exceeds that at the yield point for a simple tensile test. This is generally referred to as theVon Mises yield criterion and is expressed as:: $frac\{1\}\{2\}\; Big\; [\; (sigma\_1\; -\; sigma\_2)^2\; +\; (sigma\_2\; -\; sigma\_3)^2\; +\; (sigma\_3\; -\; sigma\_1)^2\; Big]\; le\; sigma\_y^2.\; ,!$

Based on a different theoretical underpinning this expression is also referred to as

**octahedral shear stress theory**.Other commonly used isotropic yield criteria are the

* Mohr-Coulomb yield criterion

* Drucker-Prager yield criterion

* Bresler-Pister yield criterion**Anisotropic yield criteria**When a metal is subjected to large plastic deformations the grain sizes and orientations change in the direction of deformation. As a result the plastic yield behavior of the material shows directional dependency. Under such circumstances, the isotropic yield criteria such as the von Mises yield criterion are unable to predict the yield behavior accurately. Several anisotropic yield criteria have been developed to deal with such situations.Some of the more popular anisotropic yield criteria are:

* Hill's quadratic yield criterion.

* Generalized Hill yield criterion.

*Hosford yield criterion .**Factors influencing yield stress**The stress at which yield occurs is dependent on both the rate of deformation (strain rate) and, more significantly, the temperature at which the deformation occurs. Early work by Alder and Philips in 1954 found that the relationship between yield stress and strain rate (at constant temperature) was best described by a power law relationship of the form

: $sigma\_y\; =\; C\; (dot\{epsilon\})^m\; ,!$

where C is a constant and m is the strain rate sensitivity. The latter generally increases with temperature, and materials where m reaches a value greater than ~0.5 tend to exhibit

super plastic behaviour .Later, more complex equations were proposed that simultaneously dealt with both temperature and strain rate:

: $sigma\_y\; =\; frac\{1\}\{alpha\}\; sinh^\{-1\}\; left\; [\; frac\{Z\}\{A\}\; ight\; ]\; ^\{(1/n)\}\; ,!$

where α and A are constants and Z is the temperature-compensated strain-rate - often described by the Zener-Hollomon parameter:

: $Z\; =\; (dot\{epsilon\})\; exp\; left\; (\; frac\{Q\_\{HW\{RT\}\; ight\; )\; ,!$

where Q

_{HW}is the activation energy for hot deformation and T is the absolute temperature.**trengthening mechanisms**There are several ways in which crystalline and amorphous materials can be engineered to increase their yield strength. By altering dislocation density, impurity levels, grain size (in crystalline materials), the yield strength of the material can be fine tuned. This occurs typically by introducing defects such as impurities dislocations in the material. To move this defect (plastically deforming or yielding the material), a larger stress must be applied. This thus causes a higher yield stress in the material. While many material properties depend only on the composition of the bulk material, yield strength is extremely sensitive to the materials processing as well for this reason.

These mechanisms for crystalline materials include:

1. Work Hardening - Where machining the material will introduce

dislocation s, which increases their density in the material. This increases the yield strength of the material, since now more stress must be applied to move these dislocations through a crystal lattice. Dislocations can also interact with each other, becoming entangled.The governing formula for this mechanism is: : $Deltasigma\_y\; =\; Gb\; sqrt\{\; ho\}$

where $sigma\_y$ is the yield stress, G is the shear elastic modulus, b is the magnitude of the

Burgers vector , and $ho$ is the dislocation density.2. Solid Solution Strengthening - By

alloy ing the material, impurity atoms in low concentrations will occupy a lattice position directly below a dislocation, such as directly below an extra half plane defect. This relieves a tensile strain directly below the dislocation by filling that empty lattice space with the impurity atom.The relationship of this mechanism goes as:

: $Delta\; au\; =\; Gbsqrt\{C\_s\}epsilon^\{3/2\}$

where $au$ is the

shear stress , related to the yield stress, G and b are the same as in the above example, C_s is the concentration of solute and $epsilon$ is the strain induced in the lattice due to adding the impurity.3. Particle/Precipitate Strengthening - Where the presence of a secondary phase will increase yield strength by blocking the motion of dislocations within the crystal. A line defect that, while moving through the matrix, will be forced against a small particle or precipitate of the material. Dislocations can move through this particle either by shearing the particle, or by a process known as bowing or ringing, in which a new ring of dislocations is created around the particle.

The shearing formula goes as:

$Delta\; au\; =\; cfrac\{r\_\{particle\{l\_\{interparticle\; gamma\_\{particle-matrix\}$

and the bowing/ringing formula:

$Delta\; au\; =\; cfrac\{Gb\}\{l\_\{interparticle\}-2r\_\{particle$

In these formulas, $r\_\{particle\}$ is the particle radius, $gamma\_\{particle-matrix\}$ is the surface tension between the matrix and the particle, $l\_\{interparticle\}$ is the distance between the particles.

4.

Grain boundary strengthening - Where a buildup of dislocations at a grain boundary causes a repulsive force between dislocations. As grain size decreases, the surface area to volume ratio of the grain increases, allowing more buildup of dislocations at the grain edge. Since it requires a lot of energy to move dislocations to another grain, these dislocations build up along the boundary, and increase the yield stress of the material. Also known as Hall-Petch strengthening, this type of strengthening is governed by the formula::$sigma\_y\; =\; sigma\_0\; +\; kd^\{-1/2\}\; ,$

where :$sigma\_0$ is the stress required to move dislocations, :k is a material constant, and :d is the grain size.

**Implications for structural engineering**Yielded structures have a lower stiffness, leading to increased deflections and decreased buckling strength. The structure will be permanently deformed when the load is removed, and may have residual stresses. Engineering metals display strain hardening, which implies that the yield stress is increased after unloading from a yield state. Highly optimized structures, such as airplane beams and components, rely on yielding as a fail-safe failure mode. No safety factor is therefore needed when comparing limit loads (the highest loads expected during normal operation) to yield criteria.Fact|date=September 2007

**Typical yield strength**Note: many of the values depend on manufacturing process and purity/composition.

(Source: A.M. Howatson, P.G. Lund and J.D. Todd, "Engineering Tables and Data" p41)

**ee also***

Piola-Kirchhoff stress tensor

*Strain tensor

*Stress-energy tensor

*Stress concentration

*Linear elasticity

*Tensile strength

*Elastic modulus

*Yield surface **References***cite book | author=Avallone, Eugene A.; & Baumeister III, Theodore | title=Mark's Standard Handbook for Mechanical Engineers | location=New York | publisher=McGraw-Hill | year=1996 | editor= | id=ISBN 0-07-004997-1

*cite book | author=Young, Warren C.; & Budynas, Richard G. | title=Roark's Formulas for Stress and Strain, 7th edition | location=New York | publisher=McGraw-Hill | year=2002 | editor= | id=ISBN 0-07-072542-X

* [*http://www.engineershandbook.com/Materials/mechanical.htm Engineer's Handbook*]

* Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M. (1993). "Advanced Mechanics of Materials", 5th edition John Wiley & Sons. ISBN 0-471-55157-0

*Oberg, E., Jones, F. D., and Horton, H. L. (1984). "Machinery's Handbook", 22nd edition. Industrial Press. ISBN 0-8311-1155-0

* Shigley, J. E., and Mischke, C. R. (1989). "Mechnical Engineering Design", 5th edition. McGraw Hill. ISBN 0-07-056899-5

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**Yield**— may mean:* Crop yield, a measure of the output per unit area of land under cultivation * Maximum sustainable yield, the largest long term fishery catch that can be safely taken * Rolled throughput yield, a statistical tool in Six Sigma * Yield… … Wikipedia**Yield surface**— A yield surface is a five dimensional surface in the six dimensional space of stresses. The state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and … Wikipedia**Yield management**— Yield management, also known as revenue management, is the process of understanding, anticipating and influencing consumer behavior in order to maximize revenue or profits from a fixed, perishable resource (such as airline seats or hotel room… … Wikipedia**Yield (album)**— Infobox Album | Name = Yield Type = studio Artist = Pearl Jam Released = February 3, 1998 Recorded = February 1997 – September 1997 at Studio Litho and Studio X, Seattle, Washington; Southern Tracks Recording and Doppler, Atlanta, Georgia Length … Wikipedia**yield point**— ▪ mechanics in mechanical engineering, load at which a solid material that is being stretched begins to flow, or change shape permanently, divided by its original cross sectional area; or the amount of stress in a solid at the onset of… … Universalium**Yield sign**— In road transport, a YIELD (Canada, Ireland, and the United States) or GIVE WAY (most current or former Commonwealth countries) traffic sign indicates that a vehicle driver must slow down and prepare to stop if necessary usually while merging… … Wikipedia**Engineering drawing**— Technical drawings An engineering drawing, a type of technical drawing, is used to fully and clearly define requirements for engineered items. Engineering drawing (the activity) produces engineering drawings (the documents). More than just the… … Wikipedia**engineering**— /en jeuh near ing/, n. 1. the art or science of making practical application of the knowledge of pure sciences, as physics or chemistry, as in the construction of engines, bridges, buildings, mines, ships, and chemical plants. 2. the action, work … Universalium**Willam-Warnke yield criterion**— The Willam Warnke yield criterion [Willam, K. J. and Warnke, E. P. (1975). Constitutive models for the triaxial behavior of concrete. Proceedings of the International Assoc. for Bridge and Structural Engineering , vol 19, pp. 1 30.] is a function … Wikipedia**Von Mises yield criterion**— The von Mises yield criterion [von Mises, R. (1913). Mechanik der Festen Korper im plastisch deformablen Zustand. Göttin. Nachr. Math. Phys., vol. 1, pp. 582–592.] suggests that the yielding of materials begins when the second deviatoric stress… … Wikipedia