Dynamic energy budget

Dynamic energy budget

The Dynamic Energy Budget (DEB) theory aims to identify simple quantitative rules for the organization of metabolism of individual organisms that can be understood from basic first principles. The word "dynamic" refers to the life cycle perspective of the theory, where the budget changes dynamically over time.

Cornerstones of the theory are:

  • conservation of mass, energy and time,
  • relationships between surface area and volume
  • stoichiometric constraints on production
  • organisational uncoupling of metabolic modules
  • strong and weak homeostasis
  • substrate(s) from the environment is/are first converted to reserve(s) before being used for further metabolism

They are essential to understand evolution of metabolic organisation since the origin of life.

DEB theory delineates reserves, as separate from structure. Reserves are synthesized from environmental substrates (food) for use by the metabolism for the purpose of somatic maintenance (including protein turnover, maintenance of concentration gradients across membranes, activity and other types of work), growth (increase of structural mass), maturity maintenance (installation of regulation systems, preparation for reproduction, maintenance of defense systems, such as the immune system), maturation (increase of the state of maturity) and reproduction. This organizational position of reserve creates a rather constant internal chemical environment, with only an indirect coupling with the extra-organismal environment. Reserves as well as structure are taken to be generalised compounds, i.e. mixtures of a large number of compounds, which do not change in composition. The latter requirement is called the strong homeostasis assumption. Polymers (carbohydrates, proteins, ribosomal RNA) and lipids form the main bulk of reserves and of structure.

Some reasons for including reserve are to give an explanation for:

  1. the metabolic memory; changes in food (substrate) availability affect production (growth or reproduction) with some delay. Growth continues for some time during starvation; embryo development is fueled by reserves
  2. the composition of biomass depends on growth rate. With two components (reserves and structure) particular changes in composition can be captured. More complex changes require several reserves, as is required for autotrophs.
  3. the body size scaling of life history parameters. The specific respiration rate decreases with (maximum) body size between species because large bodied species have relatively more reserve. Many other life history parameters directly or indirectly relate to respiration.
  4. the observed respiration patterns, which reflect the use of energy. Freshly laid eggs hardly respire, but their respiratory rates increase during development while egg weight decreases. After hatching, however, the respiration rate further increases, while the weight now also increases
  5. all mass fluxes are linear combinations of assimilation, dissipation and growth. If reserves are omitted, there is not enough flexibility to capture product formation and explain indirect calorimetry.

The standard model quantifies the metabolism of isomorphs with 1 reserve and 1 structure that feeds on one type of food with a constant composition. The rules for the standard model for reproducing multicellulars, and modified for dividing unicellulars, are:

Contents

Assumptions of the standard model

  • The state variables of the individual are structural mass and reserve; they have a constant composition (strong homeostasis).
  • Food is transformed into reserve, which fuels all other metabolic processes
  • The reserve density at birth equals that of the mother at egg formation. Foetuses develop similarly, but receive unrestricted amount of reserve from the mother during development.
  • Stage transitions occur if the cumulated investment into maturation exceeds threshold values. These stages typically are: embryo, juvenile and adult.
  • Somatic maintenance is proportional to structural body volume, and maturity maintenance to maturity but maturity does not increase in the adult stage. Heating costs for endotherms and osmostic work (for fresh water organsism) are somatic maintenance costs that are proportional to surface area.
  • The feeding rate is proportional to the surface area; food handling time and the transformation efficiency from food to reserve are independent of food density.
  • The reserves is such that weak homeostasis applies: the chemical composition of the body becomes constant during growth in a constant environment.
  • A fixed fraction (called kappa) of mobilized reserve is allocated to somatic maintenance plus growth (soma), the rest on maturity maintenance plus maturation or reproduction.
  • Reserve that is allocated to reproduction is first accumulated in a buffer. The rules for converting the buffer to gametes are species-specific (e.g. spawning can be once per season).
  • During starvation, individuals always give priority to maintenance. After having used the reproduction buffer, they allow a species-specific amount of shrinking of structure and/or maturity

These assumptions quantify all energy and mass fluxes in an organism (including heat, dioxygen, carbon dioxide, ammonia) and imply rules for the covariation of parameter values across species (body size scaling relationships).

Extensions of the standard model

DEB theory has been extended into many directions, such as

  • effects of changes in shape during growth (e.g. V1-morphs and V0-morphs)
  • inclusion of more types of food (substrate), which requires Synthesizing Units to model
  • inclusion of more reserves (which is necessary for organisms that do not feed on other organisms) and more structures (which is necessary to deal with plants)
  • the formation and excretion of metabolic products (which is a basis for syntrophic relationships, and useful in biotechnology)
  • the production of free radicals (linked to size and nutritional status) and their effect on survival (aging)
  • the growth of body parts (including tumours)
  • effects of chemical compounds (toxicants) on parameter values and the hazard rate (which is useful to establish no effect concentrations for environmental risk assessment): the DEBtox method
  • processes of adaptation (gene expression) to the availability of substrates (important in biodegradation)

DEB theory provides constraints on the metabolic organisation of sub-cellular processes. Together with rules for interaction between individuals (competition, syntrophy, prey-predator relationships), it also provides a basis to understand population and ecosystem dynamics. The theory, therefore, links various levels of biological organisation (cells, organisms and populations). A considerable number of popular empirical models turn out to be special cases of the DEB model, or very close numerical approximations.

Dynamic energy budget theory and body size

The explanation of certain body size relationships differs for intra- and inter-species comparisons in the context of the Dynamic Energy Budget (DEB) theory. Young (small) organisms behave different from old (large) ones of the same species because they typically do different things (grow fast and don't reproduce). Adults of small-bodied species, however, are expected to behave similarly to adults of large-bodied species. The reason the parameters of the DEB theory vary between species may thus follow naturally from the structure of the theory.

Maximum body length equals the maximum surface area-specific assimilation rate times the fraction of mobilised reserve that is allocated to the soma divided by the volume-specific somatic maintenance costs. Only the first of these three parameters depend on the size of the individual and is, therefore, proportional to maximum length. Appropriate ratios of parameters that depend on size are independent of size; this reveals how such parameters depend on size. Any eco-physiological quantity that can be written as function of DEB parameters can, for this reason, also be written as function of the maximum body size.

See also

External links

References

  1. S.A.L.M. Kooijman, 2010. Dynamic Energy Budget theory for metabolic organisation. Cambridge University Press, 3rd edition.
  2. T. Sousa, T. Domingos and S.A.L.M. Kooijman, 2008. From empirical patterns to theory: A formal metabolic theory of life. Phil. Trans. R. Soc. B, 363:2453–2464.

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Energy balance — has the following meanings in several fields:* In physics, energy balance is a systematic presentation of energy flows and transformations in a system. Theoretical basis for an energy balance is the first law of thermodynamics according to which… …   Wikipedia

  • Dynamic reserve — Reserve in the context of the Dynamic Energy Budget theory means the set of metabolites (mostly polymers and lipids) that the organism can use for metabolic purposes. These compounds can have active metabolic functions, however. They are not just …   Wikipedia

  • Dynamic infrastructure — is an information technology paradigm concerning the design of data centers so that the underlying hardware and software can respond dynamically to changing levels of demand in more fundamental and efficient ways than before. The paradigm is also …   Wikipedia

  • Energy policy of the United States — The energy policy of the United States is determined by federal, state and local public entities in the United States, which address issues of energy production, distribution, and consumption, such as building codes and gas mileage standards.… …   Wikipedia

  • Outline of energy — See also: Index of energy articles In physics, energy (from the Greek ἐνέργεια – energeia, activity, operation , from ἐνεργός – energos, active, working [1]) is a scalar physical quantity that describes the amount of work that can be performed by …   Wikipedia

  • Intermittent energy source — An intermittent energy source is any source of energy that is not continuously available due to some factor outside direct control. The intermittent source may be quite predictable, for example, tidal power, but cannot be dispatched to meet the… …   Wikipedia

  • Wireless energy transfer — or wireless power is the transmission of electrical energy from a power source to an electrical load without artificial interconnecting conductors. Wireless transmission is useful in cases where interconnecting wires are inconvenient, hazardous,… …   Wikipedia

  • Renewable energy in Africa — The developing nations of Africa are popular locations for the application of renewable energy technology. Currently, many nations already have small scale solar, wind, and geothermal devices in operation providing energy to urban and rural… …   Wikipedia

  • Food web — A freshwater aquatic and terrestrial food web. A food web (or food cycle) depicts feeding connections (what eats what) in an ecological community. Ecologists can broadly lump all life forms into one of two categories called trophic levels: 1) the …   Wikipedia

  • V0-morph — An V0 morph is an organism that changes in shape during growth such that its surface area is proportional to its volume to the power 0, so its surface area is constant.The reason why the concept is important in the context of the Dynamic Energy… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”