Rhenium


Rhenium
tungstenrheniumosmium
Tc

Re

Bh
Element 1: Hydrogen (H), Other non-metal
Element 2: Helium (He), Noble gas
Element 3: Lithium (Li), Alkali metal
Element 4: Beryllium (Be), Alkaline earth metal
Element 5: Boron (B), Metalloid
Element 6: Carbon (C), Other non-metal
Element 7: Nitrogen (N), Other non-metal
Element 8: Oxygen (O), Other non-metal
Element 9: Fluorine (F), Halogen
Element 10: Neon (Ne), Noble gas
Element 11: Sodium (Na), Alkali metal
Element 12: Magnesium (Mg), Alkaline earth metal
Element 13: Aluminium (Al), Other metal
Element 14: Silicon (Si), Metalloid
Element 15: Phosphorus (P), Other non-metal
Element 16: Sulfur (S), Other non-metal
Element 17: Chlorine (Cl), Halogen
Element 18: Argon (Ar), Noble gas
Element 19: Potassium (K), Alkali metal
Element 20: Calcium (Ca), Alkaline earth metal
Element 21: Scandium (Sc), Transition metal
Element 22: Titanium (Ti), Transition metal
Element 23: Vanadium (V), Transition metal
Element 24: Chromium (Cr), Transition metal
Element 25: Manganese (Mn), Transition metal
Element 26: Iron (Fe), Transition metal
Element 27: Cobalt (Co), Transition metal
Element 28: Nickel (Ni), Transition metal
Element 29: Copper (Cu), Transition metal
Element 30: Zinc (Zn), Transition metal
Element 31: Gallium (Ga), Other metal
Element 32: Germanium (Ge), Metalloid
Element 33: Arsenic (As), Metalloid
Element 34: Selenium (Se), Other non-metal
Element 35: Bromine (Br), Halogen
Element 36: Krypton (Kr), Noble gas
Element 37: Rubidium (Rb), Alkali metal
Element 38: Strontium (Sr), Alkaline earth metal
Element 39: Yttrium (Y), Transition metal
Element 40: Zirconium (Zr), Transition metal
Element 41: Niobium (Nb), Transition metal
Element 42: Molybdenum (Mo), Transition metal
Element 43: Technetium (Tc), Transition metal
Element 44: Ruthenium (Ru), Transition metal
Element 45: Rhodium (Rh), Transition metal
Element 46: Palladium (Pd), Transition metal
Element 47: Silver (Ag), Transition metal
Element 48: Cadmium (Cd), Transition metal
Element 49: Indium (In), Other metal
Element 50: Tin (Sn), Other metal
Element 51: Antimony (Sb), Metalloid
Element 52: Tellurium (Te), Metalloid
Element 53: Iodine (I), Halogen
Element 54: Xenon (Xe), Noble gas
Element 55: Caesium (Cs), Alkali metal
Element 56: Barium (Ba), Alkaline earth metal
Element 57: Lanthanum (La), Lanthanoid
Element 58: Cerium (Ce), Lanthanoid
Element 59: Praseodymium (Pr), Lanthanoid
Element 60: Neodymium (Nd), Lanthanoid
Element 61: Promethium (Pm), Lanthanoid
Element 62: Samarium (Sm), Lanthanoid
Element 63: Europium (Eu), Lanthanoid
Element 64: Gadolinium (Gd), Lanthanoid
Element 65: Terbium (Tb), Lanthanoid
Element 66: Dysprosium (Dy), Lanthanoid
Element 67: Holmium (Ho), Lanthanoid
Element 68: Erbium (Er), Lanthanoid
Element 69: Thulium (Tm), Lanthanoid
Element 70: Ytterbium (Yb), Lanthanoid
Element 71: Lutetium (Lu), Lanthanoid
Element 72: Hafnium (Hf), Transition metal
Element 73: Tantalum (Ta), Transition metal
Element 74: Tungsten (W), Transition metal
Element 75: Rhenium (Re), Transition metal
Element 76: Osmium (Os), Transition metal
Element 77: Iridium (Ir), Transition metal
Element 78: Platinum (Pt), Transition metal
Element 79: Gold (Au), Transition metal
Element 80: Mercury (Hg), Transition metal
Element 81: Thallium (Tl), Other metal
Element 82: Lead (Pb), Other metal
Element 83: Bismuth (Bi), Other metal
Element 84: Polonium (Po), Metalloid
Element 85: Astatine (At), Halogen
Element 86: Radon (Rn), Noble gas
Element 87: Francium (Fr), Alkali metal
Element 88: Radium (Ra), Alkaline earth metal
Element 89: Actinium (Ac), Actinoid
Element 90: Thorium (Th), Actinoid
Element 91: Protactinium (Pa), Actinoid
Element 92: Uranium (U), Actinoid
Element 93: Neptunium (Np), Actinoid
Element 94: Plutonium (Pu), Actinoid
Element 95: Americium (Am), Actinoid
Element 96: Curium (Cm), Actinoid
Element 97: Berkelium (Bk), Actinoid
Element 98: Californium (Cf), Actinoid
Element 99: Einsteinium (Es), Actinoid
Element 100: Fermium (Fm), Actinoid
Element 101: Mendelevium (Md), Actinoid
Element 102: Nobelium (No), Actinoid
Element 103: Lawrencium (Lr), Actinoid
Element 104: Rutherfordium (Rf), Transition metal
Element 105: Dubnium (Db), Transition metal
Element 106: Seaborgium (Sg), Transition metal
Element 107: Bohrium (Bh), Transition metal
Element 108: Hassium (Hs), Transition metal
Element 109: Meitnerium (Mt)
Element 110: Darmstadtium (Ds)
Element 111: Roentgenium (Rg)
Element 112: Copernicium (Cn), Transition metal
Element 113: Ununtrium (Uut)
Element 114: Ununquadium (Uuq)
Element 115: Ununpentium (Uup)
Element 116: Ununhexium (Uuh)
Element 117: Ununseptium (Uus)
Element 118: Ununoctium (Uuo)
Rhenium has a hexagonal crystal structure
75Re
Appearance
silvery-white
General properties
Name, symbol, number rhenium, Re, 75
Pronunciation /ˈrniəm/ ree-nee-əm
Element category transition metal
Group, period, block 76, d
Standard atomic weight 186.207
Electron configuration [Xe] 4f14 5d5 6s2
Electrons per shell 2, 8, 18, 32, 13, 2 (Image)
Physical properties
Phase solid
Density (near r.t.) 21.02 g·cm−3
Liquid density at m.p. 18.9 g·cm−3
Melting point 3459 K, 3186 °C, 5767 °F
Boiling point 5869 K, 5596 °C, 10105 °F
Heat of fusion 60.43 kJ·mol−1
Heat of vaporization 704 kJ·mol−1
Molar heat capacity 25.48 J·mol−1·K−1
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 3303 3614 4009 4500 5127 5954
Atomic properties
Oxidation states 7, 6, 5, 4, 3, 2, 1, 0, -1
(mildly acidic oxide)
Electronegativity 1.9 (Pauling scale)
Ionization energies
(more)
1st: 760 kJ·mol−1
2nd: 1260 kJ·mol−1
3rd: 2510 kJ·mol−1
Atomic radius 137 pm
Covalent radius 151±7 pm
Miscellanea
Crystal structure hexagonal
Magnetic ordering paramagnetic[1]
Electrical resistivity (20 °C) 193 nΩ·m
Thermal conductivity 48.0 W·m−1·K−1
Thermal expansion 6.2 µm/(m·K)
Speed of sound (thin rod) (20 °C) 4700 m·s−1
Young's modulus 463 GPa
Shear modulus 178 GPa
Bulk modulus 370 GPa
Poisson ratio 0.30
Mohs hardness 7.0
Vickers hardness 2450 MPa
Brinell hardness 1320 MPa
CAS registry number 7440-15-5
Most stable isotopes
Main article: Isotopes of rhenium
iso NA half-life DM DE (MeV) DP
185Re 37.4% 185Re is stable with 110 neutrons
187Re 62.6% 4.12×1010 y α (not observed) 1.653 183Ta
β- 0.0026 187Os
v · /ˈrniəm/ ree-nee-əm) is a chemical element with the symbol Re and atomic number 75. It is a silvery-white, heavy, third-row transition metal in group 7 of the periodic table. With an average concentration of 1 part per billion (ppb), rhenium is one of the rarest elements in the Earth's crust. The free element has the third-highest melting point and highest boiling point of any element. Rhenium resembles manganese chemically and is obtained as a by-product of molybdenum and copper refinement. Rhenium shows in its compounds a wide variety of oxidation states ranging from −1 to +7.

Discovered in 1925, rhenium was the last stable element to be discovered. It was named after the river Rhine in Europe.

Nickel-based superalloys for use in jet engines contain up to 6% rhenium, making jet engine construction the largest use for the element, with chemical industry catalytic uses being next-most important. Because of the low availability relative to demand, rhenium is among the most expensive industrial metals, with an average price of approximately US$4,575 per kilogram, on 1 August 2011.[1]

Contents

History

Rhenium (Latin: Rhenus meaning: "Rhine")[2] was the last element to be discovered having a stable isotope (other new radioactive elements have been discovered in nature since then, such as (neptunium and plutonium).[3] The existence of a yet undiscovered element at this position in the periodic table had been first predicted by Dmitry Mendeleev. Other calculated information was obtained by Henry Moseley in 1914.[4] It is generally considered to have been discovered by Walter Noddack, Ida Tacke, and Otto Berg in Germany. In 1925 they reported that they detected the element in platinum ore and in the mineral columbite. They also found rhenium in gadolinite and molybdenite.[5] In 1928 they were able to extract 1 g of the element by processing 660 kg of molybdenite.[6] The process was so complicated and expensive that production was discontinued until early 1950 when tungsten-rhenium and molybdenum-rhenium alloys were prepared. These alloys found important applications in industry that resulted in a great demand for the rhenium produced from the molybdenite fraction of porphyry copper ores.

In 1908, Japanese chemist Masataka Ogawa announced that he discovered the 43rd element and named it nipponium (Np) after Japan (which is Nippon in Japanese). However, later analysis indicated the presence of rhenium (element 75), not element 43.[7] The symbol Np was later used for the element neptunium.

Characteristics

Rhenium is a silvery-white metal with one of the highest melting points of all elements, exceeded by only tungsten and carbon. It is also one of the densest, exceeded only by platinum, iridium and osmium.

Its usual commercial form is a powder, but this element can be consolidated by pressing and sintering in a vacuum or hydrogen atmosphere. This procedure yields a compact solid having a density above 90% of the density of the metal. When annealed this metal is very ductile and can be bent, coiled, or rolled.[8] Rhenium-molybdenum alloys are superconductive at 10 K; tungsten-rhenium alloys are also superconductive[9] around 4-8 K, depending on the alloy. Rhenium metal superconducts at 2.4 K.[10][11]

Isotopes

Rhenium has a stable isotope, rhenium-185, which nevertheless occurs in minority abundance, a situation found only in one other element (indium). Naturally occurring rhenium is 37.4% 185Re, which is stable, and 62.6% 187Re, which is unstable but has a very long half-life (~1010 years). This lifetime is affected by the charge state of rhenium atom.[12][13] The beta decay of 187Re is used for rhenium-osmium dating of ores. The available energy for this beta decay (2.6 keV) is one of the lowest known among all radionuclides. There are twenty-six other recognized radioactive isotopes of rhenium.[14]

Compounds

Rhenium has nine known oxidation states: −1, 0, +1, +2, +3, +4, +5, +6 and +7.[15] The oxidation states +7, +6, +4, and +2 are the most common.[15]

The most common rhenium compounds are the oxides and the halides exhibiting a broad oxidation number spectrum: Re2O7, ReO3, Re2O5, ReO2, and Re2O3 are the known oxides, and ReF7, ReCl6, ReCl5, ReCl4 and ReCl3 are a few of the known halogen derivatives.[16] Known sulfides are hydrogen produces the negatively charged hydride [ReH9]2− ion, which is isostructural with [TcH9]2−. It consists of a trigonal prism with Re atom in the center and six hydrogen atoms at the corners. Three more hydrogens make a triangle lying parallel to the base and crossing the prism in its center (see figure). Although those hydrogen atoms are not equivalent geometrically, their electronic structure is almost the same. The coordination number 9 in this complex is the highest for a rhenium complex. Two protons in it can be replaced by sodium (Na+) or potassium (K+) ions.[17]

Rhenium is most available commercially as the sodium and ammonium perrhenates. It is also readily available as dirhenium decacarbonyl; these three compounds are common entry points to rhenium chemistry. Various perrhenate salts may be easily converted to tetrathioperrhenate by the action of ammonium hydrosulfide.[18] It is possible to reduce the dirhenium decacarbonyl Re2(CO)10 by reacting it with sodium amalgam to Na[Re(CO)5] with rhenium in the formal oxidation state −1.[19] Dirhenium decacarbonyl may be oxidatively cleaved with bromine to give bromopentacarbonylrhenium(I),[20] then reduced with zinc and acetic acid to pentacarbonylhydridorhenium:[21]

Re2(CO)10 + Br2 → 2 Re(CO)5Br
Re(CO)5Br + Zn + HOAc → Re(CO)5H + ZnBr(OAc)

Bromopentacarbonylrhenium(I) may be decarbonylated to give the rhenium tricarbonyl fragment either by refluxing in water:[22]

Re(CO)5Br + 3 H2O → [Re(CO)3(H2O)3]Br + 2 CO

or by reacting with tetraethylammonium bromide:[23]

Re(CO)5Br + 2 NEt4Br → [NEt4]2[Re(CO)3Br3] + 2 CO

Rhenium diboride (ReB2) is a hard compound having the hardness similar to that of tungsten carbide, silicon carbide, titanium diboride or zirconium diboride.[24]

Rhenium was originally thought to form the rhenide anion, Re
, in which it has the −1 oxidation state. This was based on the product of the reduction of perrhenate salts, such as the reduction of potassium perrhenate (KReO4) by potassium metal.[25] "Potassium rhenide" was shown to exist as a tetrahydrated complex, with the postulated chemical formula KRe·4H2O.[26] This compound exhibits strongly reducing properties, and slowly yields hydrogen gas when dissolved in water. The lithium and thallous salts were also reported. Later research, however, indicates that the "rhenide" ion is actually a hydridorhenate complex. "Potassium rhenide" was shown to be in fact the nonahydridorhenate, K2ReH9, containing the ReH92− anion in which the oxidation state of rhenium is actually +7.[27][28] Other methods of reduction of perrhenate salts yield compounds containing other hydrido- complexes, including ReH3(OH)3(H2O)
.[29]

Occurrence

Molybdenite

Rhenium is one of the rarest elements in Earth's crust with an average concentration of 1 ppb;[16] other sources quote the number of 0.5 ppb making it the 77th most abundant element in Earth's crust.[30] Rhenium is probably not found free in nature (its possible natural occurrence is uncertain), but occurs in amounts up to 0.2%[16] in the mineral molybdenite (which is primarily molybdenum disulfide), the major commercial source, although single molybdenite samples with up to 1.88% have been found.[31] Chile has the world's largest rhenium reserves, part of the copper ore deposits, and was the leading producer as of 2005.[32] It was only recently that the first rhenium mineral was found and described (in 1994), a rhenium sulfide mineral (ReS2) condensing from a fumarole on Russia's Kudriavy volcano, Iturup island, in the Kurile Islands.[33] Kudryavy discharges up to 20–60 kg rhenium per year mostly in the form of rhenium disulfide.[34][35] Named rheniite, this rare mineral commands high prices among collectors.[36]

Production

Ammonium perrhenate

Commercial rhenium is extracted from molybdenum roaster-flue gas obtained from copper-sulfide ores. Some molybdenum ores contain 0.001% to 0.2% rhenium.[16][31] Rhenium(VII) oxide and perrhenic acid readily dissolve in water; they are leached from flue dusts and gasses and extracted by precipitating with potassium or ammonium chloride as the perrhenate salts, and purified by recrystallization.[37] Total world production is between 40 and 50 tons/year; the main producers are in Chile, the United States, Peru, and Kazakhstan.[38] Recycling of used Pt-Re catalyst and special alloys allow the recovery of another 10 tons per year. Prices for the metal rose rapidly in early 2008, from $1000–$2000 per kg in 2003-2006 to over $10,000 in February 2008.[39][40] The metal form is prepared by reducing ammonium perrhenate with hydrogen at high temperatures:[37]

2 NH4ReO4 + 7 H2 → 2 Re + 8 H2O + 2 NH3

Applications

The F-15 engine uses rhenium-containing second-generation superalloys

Rhenium is added to high-temperature superalloys that are used to make jet engine parts, making 70% of the worldwide rhenium production.[41] Another major application is in platinum-rhenium catalysts, which are primarily used in making lead-free, high-octane gasoline.[42]

Alloys

The nickel-based superalloys have improved creep strength with the addition of rhenium. The alloys normally contain 3% or 6% of rhenium.[43] Second generation alloys contain 3%; these alloys were used in the engines of the F-16 and F-15, while the newer single-crystal third generation alloys contain 6% of rhenium; they are used in the F-22 and F-35 engines.[42][44] Rhenium is also used in the superalloys, such as CMSX-4 (2nd gen) and CMSX-10 (3rd gen) that are used in industrial gas turbine engines like the GE 7FA. Rhenium can cause superalloys to become microstructurally unstable, forming undesirable TCP (topologically close packed) phases. In 4th and 5th generation superalloys, ruthenium is used to avoid this effect. Among others the new superalloys are EPM-102 (with 3 % Ru) and TMS-162 (with 6 % Ru), both containing 6 % rhenium,[45] as well as TMS-138[46] and TMS-174.[47][48]

CFM International CFM56 jet engine still with blades made with 3% rhenium

For 2006, the consumption is given as 28% for General Electric, 28% Rolls-Royce plc and 12% Pratt & Whitney, all for superalloys, while the use for catalysts only accounts for 14% and the remaining applications use 18%.[41] In 2006, 77% of the rhenium consumption in the United States was in alloys.[42] The rising demand for military jet engines and the constant supply made it necessary to develop superalloys with a lower rhenium content. For example the newer CFM International CFM56 high-pressure turbine (HPT) blades will use Rene N515 with a rhenium content of 1.5 % instead of Rene N5 with 3 %.[49][50]

Rhenium improves the properties of tungsten and is therefore the most important alloying material for tungsten. Tungsten-rhenium alloys are more ductile at low temperature making them easier to machine, while the high-temperature stability is also improved. The effect increases with the rhenium concentration, and therefore tungsten alloys are produced with up to 27% of Re, which is the solubility limit.[51] One application for the tungsten-rhenium alloys is X-ray sources. The high melting point of both compounds, together with the high atomic mass, makes them stable against the prolonged electron impact.[52] Rhenium tungsten alloys are also applied as thermocouples to measure temperatures up to 2200 °C.[53]

The high temperature stability, low vapor pressure, good wear resistance and ability to withstand arc corrosion of rhenium are useful in self-cleaning electrical contacts. In particular, the discharge occurring during the switching oxidizes the contacts. However, rhenium oxide Re2O7 has poor stability (sublimates at ~360 °C) and therefore is removed during the discharge.[41]

Rhenium has a high melting point and a low vapor pressure similar to tantalum and tungsten, however, rhenium forms no volatile oxides. Therefore, rhenium filaments exhibit a higher stability if the filament is operated not in vacuum, but in oxygen-containing atmosphere.[54] Those filaments are widely used in mass spectrometers, in ion gauges.[55] and in photoflash lamps in photography.[56]

Catalysts

Rhenium in the form of rhenium-platinum alloy is used as catalyst for catalytic reforming, which is a chemical process to convert petroleum refinery naphthas with low octane ratings into high-octane liquid products. Worldwide, 30% of catalysts used for this process contain rhenium.[57] The olefin metathesis is the other reaction for which rhenium is used as catalyst. Normally Re2O7 on alumina is used for this process.[58] Rhenium catalysts are very resistant to chemical poisoning from nitrogen, sulfur and phosphorus, and so are used in certain kinds of hydrogenation reactions.[8][59][60]

Other uses

188Re and 186Re isotopes are radioactive and are used for treatment of liver cancer. They both have similar penetration depth in tissue (5 mm for 186Re and 11 mm for 188Re), but 186Re has advantage of longer lifetime (90 hours vs. 17 hours).[61][62]

Related by periodic trends, rhenium has a similar chemistry with technetium; work done to label rhenium onto target compounds can often be translated to technetium. This is useful for radiopharmacy, where it is difficult to work with technetium – especially the 99m isotope used in medicine – due to its expense and short half-life.[61][63]

Precaution

Very little is known about the toxicity of rhenium and its compounds because they are used in very small amounts. Soluble salts, such as the rhenium halides or perrhenates, could be hazardous due to elements other than rhenium or due to rhenium itself.[64] Only a few compounds of rhenium have been tested for their acute toxicity; two examples are potassium perrhenate and rhenium trichloride, which were injected as a solution into rats. The perrhenate had an LD50 value of 2800 mg/kg after seven days (this is very low toxicity, similar to that of table salt) and the rhenium trichloride showed LD50 of 280 mg/kg.[65]

References

  1. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  2. ^ Tilgner, Hans Georg (2000) (in German). Forschen Suche und Sucht. Books on Demand. ISBN 9783898112727. http://books.google.com/?id=UWBWnMOGtMQC. 
  3. ^ "Rhenium: Statistics and Information". Minerals Information. United States Geological Survey. 2011. http://minerals.usgs.gov/minerals/pubs/commodity/rhenium/. Retrieved 2011-05-25. 
  4. ^ Moseley, Henry (1914). "High Frequency Spectra of the Elements, Part II". Philosophical Magazine: 703–713. http://www.chemistry.co.nz/henry_moseley_article.htm. 
  5. ^ Noddack, W.; Tacke, I.; Berg, O. (1925). "Die Ekamangane". Naturwissenschaften 13 (26): 567–574. Bibcode 1925NW.....13..567.. doi:10.1007/BF01558746. 
  6. ^ Noddack, W.; Noddack, I. (1929). "Die Herstellung von einem Gram Rhenium" (in German). Zeitschrift für anorganische und allgemeine Chemie 183 (1): 353–375. doi:10.1002/zaac.19291830126. 
  7. ^ Yoshihara, H. K. (2004). "Discovery of a new element ‘nipponiumʼ: re-evaluation of pioneering works of Masataka Ogawa and his son Eijiro Ogawa". Spectrochimica Acta Part B Atomic Spectroscopy 59 (8): 1305–1310. Bibcode 2004AcSpe..59.1305Y. doi:10.1016/j.sab.2003.12.027. 
  8. ^ a b Hammond, C. R. (2004). The Elements, in Handbook of Chemistry and Physics 81st edition. CRC press. ISBN 0849304857. 
  9. ^ Neshpor, V. S.; Novikov, V. I.; Noskin, V. A.; Shalyt, S. S. (1968). "Superconductivity of Some Alloys of the Tungsten-rhenium-carbon System". Soviet Physics JETP 27: 13. Bibcode 1968JETP...27...13N. 
  10. ^ Daunt, J. G.; Smith, T. S. (1952). "Superconductivity of Rhenium". Physical Review 88 (2): 309–311. Bibcode 1952PhRv...88..309D. doi:10.1103/PhysRev.88.309. 
  11. ^ Daunt, J. G.; Lerner, E.. "The Properties of Superconducting Mo-Re Alloys". Defense Technical Information Center. http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0622881. 
  12. ^ Johnson, Bill (1993). "How to Change Nuclear Decay Rates". http://math.ucr.edu/home/baez/physics/ParticleAndNuclear/decay_rates.html. Retrieved 2009-02-21. 
  13. ^ Bosch; Faestermann, T; Friese, J; Heine, F; Kienle, P; Wefers, E; Zeitelhack, K; Beckert, K et al. (1996). "Observation of bound-state β– decay of fully ionized 187Re:187Re-187Os Cosmochronometry". Physical Review Letters 77 (26): 5190–5193. Bibcode 1996PhRvL..77.5190B. doi:10.1103/PhysRevLett.77.5190. PMID 10062738. 
  14. ^ Georges, Audi (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A (Atomic Mass Data Center) 729: 3–128. Bibcode 2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. 
  15. ^ a b Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils; (1985). "Rhenium" (in German). Lehrbuch der Anorganischen Chemie (91–100 ed.). Walter de Gruyter. pp. 1118–1123. ISBN 3110075113. 
  16. ^ a b c d e Woolf, A. A. (1961). "An outline of rhenium chemistry". Quarterly Review of the Chemical Society 15 (3): 372–391. doi:10.1039/QR9611500372. 
  17. ^ Schwochau, Klaus (2000). Technetium: chemistry and radiopharmaceutical applications. Wiley-VCH. p. 146. ISBN 3527294961. http://books.google.com/?id=BHjxH8q9iukC&pg=146. 
  18. ^ Goodman, J. T.; Rauchfuss, T. B. (2002). "Tetraethylammonium-tetrathioperrhenate [Et4N][ReS4]". Inorganic Syntheses 33: 107–110. 
  19. ^ Breimair, Josef; Steimann, Manfred; Wagner, Barbara; Beck, Wolfgang (1990). "Nucleophile Addition von Carbonylmetallaten an kationische Alkin-Komplexe [CpL2M(η2-RC≡CR)]+ (M = Ru, Fe): μ-η1:η1-Alkin-verbrückte Komplexe". Chemische Berichte 123: 7. doi:10.1002/cber.19901230103. 
  20. ^ Schmidt, Steven P.; Trogler, William C.; Basolo, Fred (1990). "Pentacarbonylrhenium Halides". Inorganic Syntheses 28: 154–159. doi:10.1002/9780470132593.ch42. 
  21. ^ Michael A. Urbancic, John R. Shapley (1990). "Pentacarbonylhydridorhenium". Inorganic Syntheses 28: 165–168. doi:10.1002/9780470132593.ch43. 
  22. ^ Lazarova, N.; James, S.; Babich, J.; Zubieta, J. (2004). "A convenient synthesis, chemical characterization and reactivity of [Re(CO)3(H2O)3]Br: the crystal and molecular structure of [Re(CO)3(CH3CN)2Br]". Inorganic Chemistry Communications 7 (9): 1023–1026. doi:10.1016/j.inoche.2004.07.006. 
  23. ^ Alberto, R.; Egli, A.; Abram, U.; Hegetschweiler, K.; Gramlich V.; Schubiger, P. A. (1994). "Synthesis and reactivity of [NEt4]2[ReBr3(CO)3]. Formation and structural characterization of the clusters [NEt4][Re33-OH)(µ-OH)3(CO)9] and [NEt4][Re2(µ-OH)3(CO)6] by alkaline titration". J. Chem. Soc., Dalton Trans. (19): 2815–2820. doi:10.1039/DT9940002815. 
  24. ^ Qin, Jiaqian; He, Duanwei; Wang, Jianghua; Fang, Leiming; Lei, Li; Li, Yongjun; Hu, Juan; Kou, Zili; Bi, Yan (2008). "Is Rhenium Diboride a Superhard Material?". Advanced Materials 20 (24): 4780–4783. doi:10.1002/adma.200801471. 
  25. ^ Cobble, J. W. (June 1957). "On the Structure of the Rhenide Ion". The Journal of Physical Chemistry 61 (6): 727–729. doi:10.1021/j150552a005.  edit
  26. ^ Bravo, J. B.; Ernest Griswold; Jacob Kleinberg (January 1954). "The Preparation of a Solid Rhenide". The Journal of Physical Chemistry 58 (1): 18–21. doi:10.1021/j150511a004.  edit
  27. ^ Floss, J. G.; Grosse, A. V. (1960). "Alkali and alkaline earth rhenohydrides". Journal of Inorganic and Nuclear Chemistry 16: 36–43. doi:10.1016/0022-1902(60)80083-8.  edit
  28. ^ Kenneth Malcolm Mackay; Rosemary Ann Mackay; W. Henderson (2002). Rosemary Ann Mackay. ed. Introduction to modern inorganic chemistry (6th ed.). CRC Press. pp. 368–369. ISBN 0748764208. 
  29. ^ Green, M. L. H.; Jones, D. J. (1965). Emeleus, H.J.; Sharpe, A.G.. ed. Advances in inorganic chemistry and radiochemistry. Academic Press. pp. 169–172. ISBN 0120236079. 
  30. ^ Emsley, John (2001). "Rhenium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 358–360. ISBN 0-19-850340-7. http://books.google.com/?id=j-Xu07p3cKwC. 
  31. ^ a b Rouschias, George (1974). "Recent advances in the chemistry of rhenium". Chemical Reviews 74 (5): 531. doi:10.1021/cr60291a002. 
  32. ^ Anderson, Steve T. "2005 Minerals Yearbook: Chile" (PDF). United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/country/2005/cimyb05.pdf. Retrieved 2008-10-26. 
  33. ^ Korzhinsky, M.A.; Tkachenko, S. I.; Shmulovich, K. I.; Taran Y. A.; Steinberg, G. S. (2004-05-05). "Discovery of a pure rhenium mineral at Kudriavy volcano". Nature 369 (6475): 51–52. Bibcode 1994Natur.369...51K. doi:10.1038/369051a0. 
  34. ^ Kremenetsky, A. A.; Chaplygin, I. V. (2010). "Concentration of rhenium and other rare metals in gases of the Kudryavy Volcano (Iturup Island, Kurile Islands)". Doklady Earth Sciences 430: 114. Bibcode 2010DokES.430..114K. doi:10.1134/S1028334X10010253. 
  35. ^ Tessalina, S; Yudovskaya, M; Chaplygin, I; Birck, J; Capmas, F (2008). "Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano". Geochimica et Cosmochimica Acta 72 (3): 889. Bibcode 2008GeCoA..72..889T. doi:10.1016/j.gca.2007.11.015. 
  36. ^ "The Mineral Rheniite". Amethyst Galleries. http://www.galleries.com/minerals/sulfides/rheniite/rheniite.htm. 
  37. ^ a b Patnaik, Pradyot (2003). Handbook of Inorganic Chemicals. McGraw-Hill. pp. 790. ISBN 0070494398. OCLC 47726843. 
  38. ^ Magyar, Michael J. (January 2011). "Rhenium" (PDF). Mineral Commodity Summaries. U.S. Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/rhenium/mcs-2011-rheni.pdf. Retrieved 2011-05-25. 
  39. ^ "MinorMetal prices". minormetals.com. http://www.minormetals.com/. Retrieved 2008-02-17. 
  40. ^ Harvey, Jan (2008-07-10). "Analysis: Super hot metal rhenium may reach "platinum prices"". Reuters India. http://in.reuters.com/article/oilRpt/idINL1037587920080710. Retrieved 2008-10-26. 
  41. ^ a b c Naumov, A. V. (2007). "Rhythms of rhenium". Russian Journal of Non-Ferrous Metals 48 (6): 418–423. doi:10.3103/S1067821207060089. 
  42. ^ a b c Magyar, Michael J.. "Mineral Yearbook: Rhenium" (PDF). United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/rhenium/myb1-2009-rheni.pdf. 
  43. ^ Bhadeshia, H. K. D. H.. "Nickel Based Superalloys". University of Cambridge. http://www.msm.cam.ac.uk/phase-trans/2003/Superalloys/superalloys.html. Retrieved 2008-10-17. 
  44. ^ Cantor, B.; Grant, Patrick Assender Hazel (2001). Aerospace Materials: An Oxford-Kobe Materials Text. CRC Press. pp. 82–83. ISBN 9780750307420. http://books.google.com/?id=n09-HajhRHYC. 
  45. ^ Bondarenko, Yu. A.; Kablov, E. N.; Surova, V. A.; Echin, A. B. (2006). "Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy". Metal Science and Heat Treatment 48 (7–8): 360. doi:10.1007/s11041-006-0099-6. 
  46. ^ "Fourth generation nickel base single crystal superalloy". http://sakimori.nims.go.jp/catalog/TMS-138-A.pdf. 
  47. ^ Koizumi, Yutaka et al.. "Development of a Next-Generation Ni-base Single Crystal Superalloy". Proceedings of the International Gas Turbine Congress, Tokyo November 2–7, 2003. http://nippon.zaidan.info/seikabutsu/2003/00916/pdf/igtc2003tokyo_ts119.pdf. 
  48. ^ Walston, S.; Cetel, A.; MacKay, R.; O'Hara, K.; Duhl, D.; Dreshfield, R.. "Joint Development of a Fourth Generation Single Crystal Superalloy". http://gltrs.grc.nasa.gov/reports/2004/TM-2004-213062.pdf. 
  49. ^ Fink, Paul J.; Miller, Joshua L.; Konitzer, Douglas G. (2010). "Rhenium reduction—alloy design using an economically strategic element". JOM 62: 55. Bibcode 2010JOM....62a..55F. doi:10.1007/s11837-010-0012-z. 
  50. ^ Konitzer, Douglas G. (2010-09). "Design in an Era of Constrained Resources". http://memagazine.asme.org/Articles/2010/September/Design_Era_Constrained.cfm. Retrieved 2010-10-12. 
  51. ^ Lassner, Erik; Schubert, Wolf-Dieter (1999). Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer. p. 256. ISBN 9780306450532. http://books.google.com/?id=foLRISkt9gcC&pg=PA256. 
  52. ^ Cherry, Pam; Duxbury, Angela (1998). Practical radiotherapy physics and equipment. Cambridge University Press. p. 55. ISBN 9781900151061. http://books.google.com/?id=5WIBbmmDm-gC&pg=PA55. 
  53. ^ Asamoto, R.; Novak, P. E. (1968). "Tungsten-Rhenium Thermocouples for Use at High Temperatures". Review of Scientific Instruments 39 (8): 1233. Bibcode 1968RScI...39.1233A. doi:10.1063/1.1683642. http://link.aip.org/link/?RSINAK/39/1233/1. 
  54. ^ Blackburn, Paul E. (1966). "The Vapor Pressure of Rhenium". The Journal of Physical Chemistry 70: 311–312. doi:10.1021/j100873a513. 
  55. ^ Earle, G. D.; Medikonduri, R.; Rajagopal, N.; Narayanan, V.; Roddy, P. A. (2005). "Tungsten-Rhenium Filament Lifetime Variability in Low Pressure Oxygen Environments". IEEE Transactions on Plasma Science 33 (5): 1736–1737. Bibcode 2005ITPS...33.1736E. doi:10.1109/TPS.2005.856413. 
  56. ^ Ede, Andrew (2006). The chemical element: a historical perspective. Greenwood Publishing Group. ISBN 9780313333040. 
  57. ^ Ryashentseva, Margarita A. (1998). "Rhenium-containing catalysts in reactions of organic compounds". Russian Chemical Reviews 67 (2): 157–177. Bibcode 1998RuCRv..67..157R. doi:10.1070/RC1998v067n02ABEH000390. 
  58. ^ Mol, Johannes C. (1999). "Olefin metathesis over supported rhenium oxide catalysts". Catalysis Today 51 (2): 289–299. doi:10.1016/S0920-5861(99)00051-6. 
  59. ^ Angelidis, T. N.; Rosopoulou, D. Tzitzios V. (1999). "Selective Rhenium Recovery from Spent Reforming Catalysts". Ind. Eng. Chem. Res. 38 (5): 1830–1836. doi:10.1021/ie9806242. 
  60. ^ Burch, Robert (1978). "The Oxidation State of Rhenium and Its Role in Platinum-Rhenium" (PDF). Platinum Metals Review 22 (2): 57–60. http://www.platinummetalsreview.com/pdf/pmr-v22-i2-057-060.pdf. 
  61. ^ a b Dilworth, Jonathan R.; Parrott, Suzanne J. (1998). "The biomedical chemistry of technetium and rhenium". Chemical Society Reviews 27: 43–55. doi:10.1039/a827043z. 
  62. ^ "The Tungsten-188 and Rhenium-188 Generator Information". Oak Ridge National Laboratory. 2005. Archived from the original on 2008-01-09. http://web.archive.org/web/20080109170105/http://www.ornl.gov/sci/nuclear_science_technology/nu_med/188info.htm. Retrieved 2008-02-03. 
  63. ^ Colton, R.; Peacock R. D. (1962). "An outline of technetium chemistry". Quarterly Reviews Chemical Society 16 (4): 299–315. doi:10.1039/QR9621600299. 
  64. ^ Emsley, J. (2003). "Rhenium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 358–361. ISBN 0198503407. 
  65. ^ Haley, Thomas J.; Cartwright, Frank D. (1968). "Pharmacology and toxicology of potassium perrhenate and rhenium trichloride". Journal of Pharmaceutical Sciences 57 (2): 321–323. doi:10.1002/jps.2600570218. PMID 5641681. 

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • RHÉNIUM — De Rhenus , le Rhin. Symbole chimique: Re Numéro atomique: 75 Masse atomique: 186,2 g Point d’ébullition: 5 627 0C environ Point de fusion: 3 180 0C Densité (à 20 0C): 21,02 Métal de couleur blanc argenté, très dur, très résistant à la corrosion… …   Encyclopédie Universelle

  • Rhénium — Tungstène ← Rhénium → Osmium Tc …   Wikipédia en Français

  • Rhenium — Rhénium Rhénium Tungstène …   Wikipédia en Français

  • rhenium — Symbol: Re Atomic number: 75 Atomic weight: 186.2 Silvery white metallic transition element. Obtained as a by product of molybdenum refinement. Rhenium molybdenum alloys are superconducting …   Elements of periodic system

  • rhenium — [rē′nē əm] n. [ModL < L Rhenus, Rhine + IUM: so named (1925) by its discoverers W. Noddack (1893 1960), I. Tacke, & O. Berg, Ger chemists] a rare, metallic chemical element that is a silver white solid or a gray to black powder, used in… …   English World dictionary

  • Rhenium — Eigenschaften …   Deutsch Wikipedia

  • Rhenium — Re (Symbol) * * * Rhe|ni|um 〈n.; s; unz.; chem. 〉 chem. Element, edelmetallähnliches Schwermetall, Ordnungszahl 75 [zu lat. rhenus „Rhein“] * * * Rhe|ni|um [lat. rhenus = Rhein; ↑ ium (1)], das; s; Symbol: Re: chem. Element aus Gruppe 7 des… …   Universal-Lexikon

  • rhenium — /ree nee euhm/, n. Chem. a rare metallic element of the manganese subgroup: used, because of its high melting point, in platinum rhenium thermocouples. Symbol: Re; at. no.: 75; at. wt.: 186.2. [1920 25; < NL, equiv. to L Rhen(us) RHINE + ium IUM] …   Universalium

  • Rhenium — renis statusas T sritis fizika atitikmenys: angl. rhenium vok. Rhenium, n rus. рений, m pranc. rhénium, m …   Fizikos terminų žodynas

  • rhenium — renis statusas T sritis fizika atitikmenys: angl. rhenium vok. Rhenium, n rus. рений, m pranc. rhénium, m …   Fizikos terminų žodynas


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.