Filament winding


Filament winding

Filament winding is a fabrication technique for creating composite material structures. The process involves winding filaments under varying amounts of tension over a male mould or mandrel. The mandrels rotates while a carriage moves horizontally, laying down fibers in the desired pattern. The most common filaments are carbon or glass fiber and are coated with synthetic resin as they are wound. Once the mandrel is completely covered to the desired thickness, the mandrel is placed in an oven to solidify (set) the resin. Once the resin has cured, the mandrel is removed, leaving the hollow final product.

Filament winding is well suited to automation, where the tension on the filaments can be carefully controlled. Filaments that are applied with high tension results in a final product with higher rigidity and strength; lower tension results in more flexibility. The orientation of the filaments can also be carefully controlled so that successive layers are plied or oriented differently from the previous layer. The angle at which the fiber is laid down will determine the properties of the final product. A high angle "hoop" will provide crush strength, while a lower angle pattern (known as a closed or helical) will provide greater tensile strength.

Products currently being produced using this technique range from golf clubs, pipes, oars, bicycle forks, power and transmission poles, pressure vessels to missile casings, aircraft fuselages and lamp posts and yacht masts.

Fiberglass Laminating

Filament Winding can also be described as the manufacture of parts with high fiber volume fractions and controlled fiber orientation. Fiber tows are immersed in a resin bath where they are coated with low or medium molecular weight reactants. The impregnated tows are then literally wound around a mandrel (mold core) in a controlled pattern to form the shape of the part. After winding, the resin is then cured, typically using heat. The mold core may be removed or may be left as an integral component of the part(Rosato, D.V.).This process is primarily used for hollow, generally circular or oval sectioned components, such as pipes and tanks. Pressure vessels, pipes and drive shafts have all been manufactured using filament winding. It has been combined with other fiber application methods such as hand layup, pultrusion, and braiding. Compaction is through fiber tension and resin content is primarily metered. The fibers may be impregnated with resin before winding (wet winding), pre-impregnated (dry winding) or post-impregnated. Wet winding has the advantages of using the lowest cost materials with long storage life and low viscosity. The pre-impregnated systems produce parts with more consistent resin content and can often be wound faster.

Materials

Glass fibre is the fibre most frequently used for filament winding, carbon and aramid fibres can and are also used. Most high strength critical aerospace structures are produced with epoxy resins, with either epoxy or cheaper polyester resins being specified for most other applications. The ability to use continuous reinforcement without any breaks or joins is a definite advantage, as is the high fibre volume fraction that is obtainable, about 60% to 80%. Only the inner surface of a filament wound structure will be smooth unless a secondary operation is performed on the outer surface. The component is normally cured at high temperature before removing the mandrel. Finishing operations such as machining or grinding are not normally necessary (Furness, J., Azom.com).

Options

* Resins: Any, e.g. epoxy, polyester, vinylester, phenolic.
* Fibers: Glass, aramid, carbon and boron fibers . The fibers are used straight from a creel and not woven or stitched into a fabric form.
* Cores: Any, although components are usually single skin.


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • filament winding — kaitinimo apvija statusas T sritis automatika atitikmenys: angl. filament winding; heating winding vok. Heizwicklung, f rus. накальная обмотка, f pranc. enroulement de chauffage, m …   Automatikos terminų žodynas

  • filament winding — kaitinimo apvija statusas T sritis fizika atitikmenys: angl. filament winding; heating winding vok. Heizwindung, f rus. обмотка накала, f pranc. enroulement de chauffage, m …   Fizikos terminų žodynas

  • Continuous filament winding machine — CFW Machine …   Wikipedia

  • heating winding — kaitinimo apvija statusas T sritis automatika atitikmenys: angl. filament winding; heating winding vok. Heizwicklung, f rus. накальная обмотка, f pranc. enroulement de chauffage, m …   Automatikos terminų žodynas

  • heating winding — kaitinimo apvija statusas T sritis fizika atitikmenys: angl. filament winding; heating winding vok. Heizwindung, f rus. обмотка накала, f pranc. enroulement de chauffage, m …   Fizikos terminų žodynas

  • materials science — the study of the characteristics and uses of various materials, as glass, plastics, and metals. [1960 65] * * * Study of the properties of solid materials and how those properties are determined by the material s composition and structure, both… …   Universalium

  • Flyback transformer — A flyback or line output transformer (FBT or LOPT) is a type of transformer used in the power supply of a cathode ray tube that generates the high voltage needed to drive a CRT type monitor, and can also be used to power a plasma globe. It… …   Wikipedia

  • Carbon-fiber-reinforced polymer — For fibers of carbon, see carbon (fiber). Tail of an RC helicopter, made of CFRP Carbon fiber reinforced polymer or carbon fiber reinforced plastic (CFRP or CRP or often simply carbon fiber), is a very strong and light fiber reinforced polymer… …   Wikipedia

  • Carbon fiber — or carbon fibre [See American and British English spelling differences.] (alternately called graphite fiber, graphite fibre or carbon graphite) is a material consisting of extremely thin fibers about 0.0002–0.0004 inches (0.005–0.010 mm) in… …   Wikipedia

  • Composite material — A cloth of woven carbon fiber filaments, a common element in composite materials Composite materials, often shortened to composites or called composition materials, are engineered or naturally occurring materials made from two or more constituent …   Wikipedia


We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.