# Aftershock

﻿
Aftershock

An aftershock is a smaller earthquake that occurs after a previous large earthquake, in the same area of the main shock. If an aftershock is larger than the main shock, the aftershock is redesignated as the main shock and the original main shock is redesignated as a foreshock. Aftershocks are formed as the crust around the displaced fault plane adjusts to the effects of the main shock.

## Distribution of aftershocks

Most aftershocks are located over the full area of fault rupture and either occur along the fault plane itself or along other faults within the volume affected by the strain associated with the main shock. Typically, aftershocks are found up to a distance equal to the rupture length away from the fault plane.

The pattern of aftershocks helps confirm the size of area that slipped during the main shock. In the case of the 2004 Indian Ocean earthquake and the 2008 Sichuan earthquake the aftershock distribution shows in both cases that the epicenter (where the rupture initiated) lies to one end of the final area of slip, implying strongly asymmetric rupture propagation.

## Aftershock size and frequency with time

Aftershocks rates and magnitudes follow several well-established empirical laws.

### Omori's Law

The rate of aftershocks with time follows Omori's law.[1] Omori's law, or more correctly the modified Omori's law, is an empirical relation for the temporal decay of aftershock rates. In 1894, Fusakichi Omori published his work on the aftershocks of earthquakes, in which he stated that aftershock frequency decreases by roughly the reciprocal of time after the main shock.

$n(t) = \frac {K} {c+t}$

where:

• n(t) is the rate of earthquakes measured in a certain time t after the main shock,
• K is the amplitude, and
• c is the "time offset" parameter.

The modified version of Omori's law, now commonly used, was proposed by Utsu in 1961.[2][3]

$n(t) = \frac {k} {(c+t)^p}$

where

• p modifies the decay rate and typically falls in the range 0.7–1.5.

According to these equations, the rate of aftershocks decreases quickly with time. The rate of aftershocks is proportional to the inverse of time since the mainshock. Thus whatever the odds of an aftershock are on the first day, the second day will have 1/2 the odds of the first day and the tenth day will have approximately 1/10 the odds of the first day (when p is equal to 1). These patterns describe only the statistical behavior of aftershocks; the actual times, numbers and locations of the aftershocks are stochastic, while tending to follow these patterns. As this is an empirical law, values of the parameters are obtained by fitting to data after a mainshock has occurred, and they imply no specific physical mechanism in any given case.

### Båth's Law

The other main law describing aftershocks is known as Båth's Law[4][5] and this states that the difference in magnitude between a main shock and its largest aftershock is approximately constant, independent of the main shock magnitude, typically 1.1-1.2 on the Moment magnitude scale.

### Gutenberg-Richter law

Aftershock sequences also typically follow the Gutenberg-Richter law of size scaling, which refers to the relationship between the magnitude and total number of earthquakes in a region in a given time period.

$\!\,N = 10^{a - b M}$

Where:

• $\scriptstyle N$ is the number of events greater or equal to $\scriptstyle M$
• $\scriptstyle M$ is magnitude
• $\scriptstyle a$ and $\scriptstyle b$ are constants

In summary, there are more small aftershocks and fewer large aftershocks.

## Impact of aftershocks

Aftershocks are dangerous because they are usually unpredictable, can be of a large magnitude, and can collapse buildings that are damaged from the main shock. Bigger earthquakes have more and larger aftershocks and the sequences can last for years or even longer especially when a large event occurs in a seismically quiet area; see, for example, the New Madrid Seismic Zone, where events still follow Omori's law from the main shocks of 1811–1812. An aftershock sequence is deemed to have ended when the rate of seismicity drops back to a background level; i.e., no further decay in the number of events with time can be detected.

Land movement around the New Madrid is reported to be no more than 0.2 mm (0.0079 in) a year,[6] in contrast to the San Andreas Fault which averages up to 37 mm (1.5 in) a year across California.[7] Aftershocks on the San Andreas are now believed to top out at 10 years while earthquakes in New Madrid are considered aftershocks nearly 200 years after the 1812 New Madrid earthquake.[8]

## Foreshocks

Some scientists have tried to use foreshocks to help predict upcoming earthquakes, but the 1975 Haicheng earthquake in China is one of the few successes. On the East Pacific Rise however, transform faults show quite predictable foreshock behaviour before the main seismic event. Reviews of data of past events and their foreshocks showed that they have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. (McGuire et al., 2005)

## Notes

1. ^ Omori F. (1894). "On the aftershocks of earthquakes". Journal of the College of Science, Imperial University of Tokyo 7: 111–200.
2. ^ Utsu, T. (1961). "A statistical study of the occurrence of aftershocks". Geophysical Magazine 30: 521–605.
3. ^ Utsu, T.; Ogata, Y.; Matsu'ura, R.S. (1995). "The centenary of the Omori formula for a decay law of aftershock activity". Journal of Physics of the Earth 43: 1–33.
4. ^ Richter, Charles F., Elementary seismology (San Francisco, California, USA: W. H. Freeman & Co., 1958), page 69.
5. ^ Båth, Markus (1965). "Lateral inhomogeneities in the upper mantle". Tectonophysics 2: 483–514. doi:10.1016/0040-1951(65)90003-X.
6. ^ Elizabeth K. Gardner (2009-03-13). "New Madrid fault system may be shutting down". physorg.com. Retrieved 2011-03-25.
7. ^ Wallace, Robert E.. "Present-Day Crustal Movements and the Mechanics of Cyclic Deformation". The San Andreas Fault System, California. Archived from the original on 2006-12-16. Retrieved 2007-10-26.
8. ^

## References

• McGuire JJ, Boettcher MS, Jordan TH (2005). "Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults". Nature 434 (7032): 445–7. doi:10.1038/nature03377. PMID 15791246.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Aftershock — puede referirse a: Aftershock, nombre de la montaña rusa modelo Boomerang del parque de atracciones estadounidense Silverwood Theme Park. Aftershock (2010), película del director de cine chino Feng Xiaogang. Aftershock, grupo estadounidense de… …   Wikipedia Español

• aftershock — (n.) also after shock, 1894, from AFTER (Cf. after) + SHOCK (Cf. shock) (n.) …   Etymology dictionary

• aftershock — ► NOUN ▪ a smaller earthquake following the main shock of a large earthquake …   English terms dictionary

• aftershock — [af′tərshäk΄] n. a minor earthquake, usually one of a series, that follows a larger earthquake and originates at or near the same place …   English World dictionary

• Aftershock — 47° 54′ 16″ N 116° 42′ 38″ W / 47.904486, 116.710680 …   Wikipédia en Français

• Aftershock — Dieser Artikel wurde wegen inhaltlicher Mängel auf der Qualitätssicherungsseite der Redaktion Film und Fernsehen unter Angabe von Verbesserungsvorschlägen eingetragen. Beteilige Dich an der Verbesserung dieses Artikels und entferne diesen… …   Deutsch Wikipedia

• aftershock — [[t]ɑ͟ːftə(r)ʃɒk, æ̱f [/t]] aftershocks 1) N COUNT Aftershocks are smaller earthquakes which occur after a large earthquake. 2) N COUNT: usu with supp People sometimes refer to the effects of an important event, especially a bad one, as the… …   English dictionary

• aftershock — UK [ˈɑːftə(r)ˌʃɒk] / US [ˈæftərˌʃɑk] noun [countable] Word forms aftershock : singular aftershock plural aftershocks 1) a small earthquake (= occasion when the earth shakes) that happens after a bigger one 2) unpleasant results or feelings after… …   English dictionary

• aftershock — /af teuhr shok , ahf /, n. 1. a small earthquake or tremor that follows a major earthquake. 2. the effect, result, or repercussion of an event; aftermath; consequence: The aftershock of the bankruptcy was felt throughout the financial community.… …   Universalium

• aftershock — noun Date: 1894 1. a minor shock following the main shock of an earthquake 2. an aftereffect of a distressing or traumatic event …   New Collegiate Dictionary