# Floyd–Warshall algorithm

﻿
Floyd–Warshall algorithm

In computer science, the Floyd–Warshall algorithm (sometimes known as the WFI Algorithm or Roy–Floyd algorithm, since Bernard Roy described this algorithm in 1959) is a graph analysis algorithm for finding shortest paths in a weighted, directed graph. A single execution of the algorithm will find the shortest paths between all pairs of vertices. The Floyd–Warshall algorithm is an example of dynamic programming.

Algorithm

The Floyd-Warshall algorithm compares all possible paths through the graph between each pair of vertices. It is able to do this with only $V^3$ comparisons. This is remarkable considering that there may be up to $V^2$ edges in the graph, and every combination of edges is tested. It does so by incrementally improving an estimate on the shortest path between two vertices, until the estimate is known to be optimal.

Consider a graph $G$ with vertices $V$, each numbered 1 through N. Further consider a function $extrm\left\{shortestPath\right\}\left(i,j,k\right)$ that returns the shortest possible path from $i$ to $j$ using only vertices 1 through $k$ as intermediate points along the way. Now, given this function, our goal is to find the shortest path from each $i$ to each $j$ using only nodes 1 through $k+1$.

There are two candidates for this path: either the true shortest path only uses nodes in the set $\left(1...k\right)$; or there exists some path that goes from $i$ to $k+1$, then from $k+1$ to $j$ that is better. We know that the best path from $i$ to $j$ that only uses nodes 1 through $k$ is defined by $extrm\left\{shortestPath\right\}\left(i,j,k\right)$, and it is clear that if there were a better path from $i$ to $k+1$ to $j$, then the length of this path would be the concatenation of the shortest path from $i$ to $k+1$ (using vertices in $\left(1...k\right)$) and the shortest path from $k+1$ to $j$ (also using vertices in $\left(1...k\right)$).

Therefore, we can define $shortestPath\left(i,j,k\right)$ in terms of the following recursive formula:

$extrm\left\{shortestPath\right\}\left(i,j,k\right) = min\left( extrm\left\{shortestPath\right\}\left(i,j,k-1\right), extrm\left\{shortestPath\right\}\left(i,k,k-1\right),+, extrm\left\{shortestPath\right\}\left(k,j,k-1\right)\right);,!$

$extrm\left\{shortestPath\right\}\left(i,j,0\right) = extrm\left\{edgeCost\right\}\left(i,j\right);,!$

This formula is the heart of Floyd Warshall. The algorithm works by first computing $shortestPath\left(i,j,1\right)$ for all (i,j) pairs, then using that to find $shortestPath\left(i,j,2\right)$ for all $\left(i,j\right)$ pairs, etc. This process continues until k=n, and we have found the shortest path for all $\left(i,j\right)$ pairs using any intermediate vertices.

Pseudocode

Conveniently, when calculating the $k$th case, one can overwrite the information saved from the computation of $k-1$. This means the algorithm uses quadratic memory. Be careful to note the initialization conditions:

1 /* Assume a function "edgeCost"(i,j) which returns the cost of the edge from i to j 2 (infinity if there is none). 3 Also assume that n is the number of vertices and "edgeCost"(i,i)=0 4 */ 5 6 int path [] [] ; 7 /* A 2-dimensional matrix. At each step in the algorithm, path [i] [j] is the shortest path 8 from i to j using intermediate values in (1..k-1). Each path [i] [j] is initialized to 9 "edgeCost"(i,j). 10 */ 11 12 procedure "FloydWarshall" () 13 for $mathit\left\{k\right\} := 0$ to $mathit\left\{n-1\right\}$ 14 for each $mathit\left\{\left(i,j\right)\right\}$ in $\left(0..n-1\right)$ 15 path [i] [j] = min ( path [i] [j] , path [i] [k] +path [k] [j] );

Behaviour with negative cycles

For numerically meaningful output, Floyd-Warshall assumes that there are no negative cycles (in fact, between any pair of vertices which form part of a negative cycle, the shortest path is not well-defined because the path can be infinitely small). Nevertheless, if there are negative cycles, Floyd–Warshall can be used to detect them. A negative cycle can be detected if the "path" matrix contains a negative number along the diagonal. If path [i] [i] is negative for some vertex i, then this vertex belongs to at least one negative cycle.

Analysis

To find all $mathit\left\{n\right\}^2$ of $mathcal\left\{W\right\}_k$ from those of $mathcal\left\{W\right\}_\left\{mathit\left\{k\right\}-1\right\}$ requires $2mathit\left\{n\right\}^2$ bit operations. Since we begin with $mathcal\left\{W\right\}_0 = mathcal\left\{W\right\}_mathcal\left\{R\right\}$ and compute the sequence of $mathit\left\{n\right\}$ zero-one matrices $mathcal\left\{W\right\}_1$, $mathcal\left\{W\right\}_2$, $...$, $mathcal\left\{W\right\}_mathit\left\{n\right\} = mathcal\left\{M\right\}_\left\{mathcal\left\{R\right\}^*\right\}$, the total number of bit operations used is $mathit\left\{n\right\} imes 2mathit\left\{n\right\}^2 = 2mathit\left\{n\right\}^3$. Therefore, the complexity of the algorithm is $Theta\left(\left\{n\right\}^3\right)$ and can be solved by a deterministic machine in polynomial time.

Applications and generalizations

The Floyd–Warshall algorithm can be used to solve the following problems, among others:
* Shortest paths in directed graphs (Floyd's algorithm).
* Transitive closure of directed graphs (Warshall's algorithm). In Warshall's original formulation of the algorithm, the graph is unweighted and represented by a Boolean adjacency matrix. Then the addition operation is replaced by logical conjunction (AND) and the minimum operation by logical disjunction (OR).
* Finding a regular expression denoting the regular language accepted by a finite automaton (Kleene's algorithm)
* Inversion of real matrices (Gauss-Jordan algorithm).
* Optimal routing. In this application one is interested in finding the path with the maximum flow between two vertices. This means that, rather than taking minima as in the pseudocode above, one instead takes maxima. The edge weights represent fixed constraints on flow. Path weights represent bottlenecks; so the addition operation above is replaced by the minimum operation.
* Testing whether an undirected graph is bipartite.

Implementations

* A Perl implementation is available in the [http://search.cpan.org/search?query=Graph&mode=all Graph] module
* A Javascript implementation is available at [http://alexle.net/stuff/floyd-algorithm/ Alex Le's Blog]
* A Python implementation is available in the [https://networkx.lanl.gov/ NetworkX] package
* A C implementation is available at [http://www.ece.rice.edu/~jpr/research/fwarsh.html ece.rice.edu]
* A C++ implementation is available in the [http://www.boost.org/libs/graph/doc/ boost::graph] library
* A Java implementation is in the [http://svn.apache.org/repos/asf/commons/dormant/graph2/branches/jakarta/src/java/org/apache/commons/graph/impl/AllPaths.java Apache commons graph] library.

References

*
** Section 26.2, "The Floyd–Warshall algorithm", pp. 558–565;
** Section 26.4, "A general framework for solving path problems in directed graphs", pp. 570–576.
*
*
*
*

ee also

* Robert Floyd
* Stephen Warshall
* Dijkstra's algorithm

* [http://tide4javascript.com/?s=Floyd Analyze Floyd's algorithm in an online Javascript IDE]
* [http://www.pms.informatik.uni-muenchen.de/lehre/compgeometry/Gosper/shortest_path/shortest_path.html#visualization Interactive animation of Floyd–Warshall algorithm]

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Floyd-Warshall-Algorithmus — Der Algorithmus von Floyd und Warshall (auch Floyd Warshall Algorithmus oder Tripel Algorithmus), benannt nach Robert Floyd und Stephen Warshall, ist ein Algorithmus der Graphentheorie. Er findet die Länge der kürzesten Wege zwischen allen Paaren …   Deutsch Wikipedia

• Floyd Warshall Algorithmus — Der Algorithmus von Floyd und Warshall (auch Floyd Warshall Algorithmus oder Tripel Algorithmus), benannt nach Robert Floyd und Stephen Warshall, ist ein Algorithmus der Graphentheorie. Er findet die Länge der kürzesten Wege zwischen allen Paaren …   Deutsch Wikipedia

• Algoritmo de Floyd-Warshall — En informática, el algoritmo de Floyd Warshall, descrito en 1959 por Bernard Roy, es un algoritmo de análisis sobre grafos para encontrar el camino mínimo en grafos dirigidos ponderados. El algoritmo encuentra el camino entre todos los pares de… …   Wikipedia Español

• Algorithme De Floyd-Warshall — En informatique, l algorithme de Floyd Warshall (parfois appelé algorithme de Roy Floyd car décrit par Bernard Roy en 1959) est un algorithme pour déterminer tous les plus courts chemins dans un graphe orienté et valué, en temps cubique. Sommaire …   Wikipédia en Français

• Algorithme de floyd-warshall — En informatique, l algorithme de Floyd Warshall (parfois appelé algorithme de Roy Floyd car décrit par Bernard Roy en 1959) est un algorithme pour déterminer tous les plus courts chemins dans un graphe orienté et valué, en temps cubique. Sommaire …   Wikipédia en Français

• Algorithme de Floyd-Warshall — En informatique, l algorithme de Floyd Warshall (parfois appelé algorithme de Roy Floyd car décrit par Bernard Roy en 1959) est un algorithme pour déterminer tous les plus courts chemins dans un graphe orienté et valué, en temps cubique. Sommaire …   Wikipédia en Français

• Floyd — is either variant spelling of the Scottish name Flood or the Welsh name Lloyd which means grey , and may refer to:Places in the United States* Floyd, Arkansas * Floyd, Iowa, community in Floyd County * Floyd, New Mexico, community in Roosevelt… …   Wikipedia

• Algorithm — Flow chart of an algorithm (Euclid s algorithm) for calculating the greatest common divisor (g.c.d.) of two numbers a and b in locations named A and B. The algorithm proceeds by successive subtractions in two loops: IF the test B ≤ A yields yes… …   Wikipedia

• Warshall-Algorithmus — Der Algorithmus von Floyd und Warshall (auch Floyd Warshall Algorithmus oder Tripel Algorithmus), benannt nach Robert Floyd und Stephen Warshall, ist ein Algorithmus der Graphentheorie. Er findet die Länge der kürzesten Wege zwischen allen Paaren …   Deutsch Wikipedia

• Algorithme de Floyd — Warshall En informatique, l algorithme de Floyd Warshall (parfois appelé algorithme de Roy Floyd car décrit par Bernard Roy en 1959) est un algorithme pour déterminer tous les plus courts chemins dans un graphe orienté et valué, en temps cubique …   Wikipédia en Français