 Polytope

Not to be confused with polytrope.
In elementary geometry, a polytope is a geometric object with flat sides, which exists in any general number of dimensions. A polygon is a polytope in two dimensions, a polyhedron in three dimensions, and so on in higher dimensions (such as a polychoron in four dimensions). Some theories further generalise the idea to include such things as unbounded polytopes (apeirotopes and tessellations), and abstract polytopes.
When referring to an ndimensional generalization, the term npolytope is used. For example, a polygon is a 2polytope, a polyhedron is a 3polytope, and a polychoron is a 4polytope.
The term was coined by the mathematician Hoppe, writing in German, and was later introduced to English by Alicia Boole Stott, the daughter of logician George Boole.^{[1]}
Contents
Different approaches to definition
The term polytope is a broad term that covers a wide class of objects, and different definitions are attested in mathematical literature. Many of these definitions are not equivalent, resulting in different sets of objects being called polytopes. They represent different approaches of generalizing the convex polytopes to include other objects with similar properties and aesthetic beauty.
The original approach broadly followed by Schläfli, Gossett and others begins with the 0dimensional point as a 0polytope (vertex). A 1dimensional 1polytope (edge) is constructed by bounding a line segment with two 0polytopes. Then 2polytopes (polygons) are defined as plane objects whose bounding facets (edges) are 1polytopes, 3polytopes (polyhedra) are defined as solids whose facets (faces) are 2polytopes, and so forth.
A polytope may also be regarded as a tessellation of some given manifold. Convex polytopes are equivalent to tilings of the sphere, while others may be tilings of other elliptic, flat or toroidal surfaces – see elliptic tiling and toroidal polyhedron. Under this definition, plane tilings and space tilings (honeycombs) are considered to be polytopes, and are sometimes classed as apeirotopes because they have infinitely many cells; tilings of hyperbolic spaces are also included under this definition.
An alternative approach defines a polytope as a set of points that admits a simplicial decomposition. In this definition, a polytope is the union of finitely many simplices, with the additional property that, for any two simplices that have a nonempty intersection, their intersection is a vertex, edge, or higher dimensional face of the two. However this definition does not allow star polytopes with interior structures, and so is restricted to certain areas of mathematics.
The theory of abstract polytopes attempts to detach polytopes from the space containing them, considering their purely combinatorial properties. This allows the definition of the term to be extended to include objects for which it is difficult to define clearly a natural underlying space, such as the 11cell.
Elements
The elements of a polytope are its vertices, edges, faces, cells and so on. The terminology for these is not entirely consistent across different authors. To give just a few examples: Some authors use face to refer to an (n−1)dimensional element while others use face to denote a 2face specifically, and others use jface or kface to indicate an element of j or k dimensions. Some sources use edge to refer to a ridge, while H. S. M. Coxeter uses cell to denote an (n−1)dimensional element.
An ndimensional polytope is bounded by a number of (n−1)dimensional facets. These facets are themselves polytopes, whose facets are (n−2)dimensional ridges of the original polytope. Every ridge arises as the intersection of two facets (but the intersection of two facets need not be a ridge). Ridges are once again polytopes whose facets give rise to (n−3)dimensional boundaries of the original polytope, and so on. These bounding subpolytopes may be referred to as faces, or specifically jdimensional faces or jfaces. A 0dimensional face is called a vertex, and consists of a single point. A 1dimensional face is called an edge, and consists of a line segment. A 2dimensional face consists of a polygon, and a 3dimensional face, sometimes called a cell, consists of a polyhedron.
Dimension
of elementElement name
(in an npolytope)− 1 Null polytope (necessary in abstract theory) 0 Vertex 1 Edge 2 Face 3 Cell 4 Hypercell j jface – element of rank j = − 1, 0, 1, 2, 3, ..., n n − 3 Peak – (n−3)face n − 2 Ridge or subfacet – (n−2)face n − 1 Facet – (n−1)face n Body – nface Special classes of polytope
Regular polytopes
A polytope may be regular. The regular polytopes are a class of highlysymmetrical and aestheticallypleasing polytopes, including the Platonic solids, which have been studied extensively since ancient times.
Main article: Regular polytopeConvex polytopes
A polytope may be convex. The convex polytopes are the simplest kind of polytopes, and form the basis for different generalizations of the concept of polytopes. A convex polytope is sometimes defined as the intersection of a set of halfspaces. This definition allows a polytope to be neither bounded nor finite. Polytopes are defined in this way, e.g., in linear programming. A polytope is bounded if there is a ball of finite radius that contains it. A polytope is said to be pointed if it contains at least one vertex. Every bounded nonempty polytope is pointed. An example of a nonpointed polytope is the set . A polytope is finite if it is defined in terms of finite number of objects, e.g., as an intersection of a finite number of halfplanes.
Main article: Convex polytopeStar polytopes
A nonconvex polytope may be selfintersecting; this class of polytopes include the star polytopes.
Main article: Star polytopeAbstract polytopes
An abstract polytope is a partially ordered set of elements or members, which obeys certain rules. It is a purely algebraic structure, and the theory was developed in order to avoid some of the issues which make it difficult to reconcile the various geometric classes within a consistent mathematical framework. A geometric polytope is said to be a realisation of some associated abstract polytope.
Main article: Abstract polytopeSelfdual polytopes
In 2 dimensions, all regular polygons (regular 2polytopes) are selfdual.
In 3 dimensions, the tetrahedron is selfdual, as well as canonical polygonal pyramids and elongated pyramids.
In higher dimensions, every regular nsimplex, with Schlafli symbol {3^{n}}, is selfdual.
In addition, the 24cell in 4 dimensions, with Schlafli symbol {3,4,3}, is selfdual.
History
The concept of a polytope originally began with polygons and polyhedra, both of which have been known since ancient times:
Main articles: polygon and polyhedronIt was not until the 19th century that higher dimensions were discovered and geometers learned to construct analogues of polygons and polyhedra in them. The first hint of higher dimensions seems to have come in 1827, with Möbius' discovery that two mirrorimage solids can be superimposed by rotating one of them through a fourth dimension. By the 1850s, a handful of other mathematicians such as Cayley and Grassman had considered higher dimensions. Ludwig Schläfli was the first of these to consider analogues of polygons and polyhedra in such higher spaces. In 1852 he described the six convex regular 4polytopes, but his work was not published until 1901, six years after his death. By 1854, Bernhard Riemann's Habilitationsschrift had firmly established the geometry of higher dimensions, and thus the concept of ndimensional polytopes was made acceptable. Schläfli's polytopes were rediscovered many times in the following decades, even during his lifetime.
In 1882 Hoppe, writing in German, coined the word polytop to refer to this more general concept of polygons and polyhedra. In due course, Alicia Boole Stott introduced polytope into the English language.
In 1895, Thorold Gosset not only rediscovered Schläfli's regular polytopes, but also investigated the ideas of semiregular polytopes and spacefilling tessellations in higher dimensions. Polytopes were also studied in nonEuclidean spaces such as hyperbolic space.
During the early part of the 20th century, higherdimensional spaces became fashionable, and together with the idea of higher polytopes, inspired artists such as Picasso to create the movement known as cubism.
An important milestone was reached in 1948 with H. S. M. Coxeter's book Regular Polytopes, summarising work to date and adding findings of his own. Branko Grünbaum published his influential work on Convex Polytopes in 1967.
More recently, the concept of a polytope has been further generalized. In 1952 Shephard developed the idea of complex polytopes in complex space, where each real dimension has an imaginary one associated with it. Coxeter went on to publish his book, Regular Complex Polytopes, in 1974. Complex polytopes do not have closed surfaces in the usual way, and are better understood as configurations. This kind of conceptual issue led to the more general idea of incidence complexes and the study of abstract combinatorial properties relating vertices, edges, faces and so on. This in turn led to the theory of abstract polytopes as partiallyordered sets, or posets, of such elements. McMullen and Schulte published their book Abstract Regular Polytopes in 2002.
Enumerating the uniform polytopes, convex and nonconvex, in four or more dimensions remains an outstanding problem.
In modern times, polytopes and related concepts have found many important applications in fields as diverse as computer graphics, optimization, search engines, cosmology and numerous other fields.
Uses
In the study of optimization, linear programming studies the maxima and minima of linear functions constricted to the boundary of an ndimensional polytope.
In linear programming, polytopes occur in the use of Generalized barycentric coordinates and Slack variables.
See also
 List of regular polytopes
 Convex polytope
 Regular polytope
 Semiregular polytope
 Uniform polytope
 Abstract polytope
 Bounding volumeDiscrete oriented polytope
 Regular forms
 Intersection of a polyhedron with a line
 Extension of a polyhedron
 Coxeter group
 By dimension:
 2polytope or polygon
 3polytope or polyhedron
 4polytope or polychoron
 5polytope
 6polytope
 7polytope
 8polytope
 9polytope
 10polytope
 Polyform
 Polytope de Montréal
 Schläfli symbol
 Honeycomb (geometry)
References
 ^ A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
 Coxeter, Harold Scott MacDonald (1973), Regular Polytopes, New York: Dover Publications, ISBN 9780486614809.
 Grünbaum, Branko (2003), Kaibel, Volker; Klee, Victor; Ziegler, Günter M., eds., Convex polytopes (2nd ed.), New York & London: SpringerVerlag, ISBN 0387004246.
 Ziegler, Günter M. (1995), Lectures on Polytopes, Graduate Texts in Mathematics, 152, Berlin, New York: SpringerVerlag.
External links
 Weisstein, Eric W., "Polytope" from MathWorld.
 "Math will rock your world" – application of polytopes to a database of articles used to support custom news feeds via the Internet – (Business Week Online)
 Regular and semiregular convex polytopes a short historical overview:
Dimension Dimensional spaces One · Two · Three · Four · Five · Six · Seven · Eight · ndimensions · Spacetime · Projective space · HyperplanePolytopes and Shapes Concepts and mathematics Cartesian coordinates · Linear algebra · Geometric algebra · Conformal geometry · Reflection · Rotation · Plane of rotation · Space · Fractal dimension · MultiverseFundamental convex regular and uniform polytopes in dimensions 2–10 Family A_{n} BC_{n} D_{n} E_{6} / E_{7} / E_{8} / F_{4} / G_{2} H_{n} Regular polygon Triangle Square Hexagon Pentagon Uniform polyhedron Tetrahedron Octahedron • Cube Demicube Dodecahedron • Icosahedron Uniform polychoron 5cell 16cell • Tesseract Demitesseract 24cell 120cell • 600cell Uniform 5polytope 5simplex 5orthoplex • 5cube 5demicube Uniform 6polytope 6simplex 6orthoplex • 6cube 6demicube 1_{22} • 2_{21} Uniform 7polytope 7simplex 7orthoplex • 7cube 7demicube 1_{32} • 2_{31} • 3_{21} Uniform 8polytope 8simplex 8orthoplex • 8cube 8demicube 1_{42} • 2_{41} • 4_{21} Uniform 9polytope 9simplex 9orthoplex • 9cube 9demicube Uniform 10polytope 10simplex 10orthoplex • 10cube 10demicube npolytopes nsimplex northoplex • ncube ndemicube 1_{k2} • 2_{k1} • k_{21} pentagonal polytope Topics: Polytope families • Regular polytope • List of regular polytopes Categories: Polytopes
 Real algebraic geometry
Wikimedia Foundation. 2010.
Look at other dictionaries:
Polytope — Un polytope en dimension 3 Le terme polytope admet plusieurs définitions au sein des mathématiques. Principalement car les usages diffèrent en quelques points selon les pays, mais l usage américain ayant tendance à s imposer, on se retrouve… … Wikipédia en Français
polytope — noun A finite region of n dimensional space bounded by hyperplanes; the geometrical entity represented by the general term of the infinite sequence point, line, polygon, polyhedron … Wiktionary
Polytope regulier — Polytope régulier Pour les articles homonymes, voir régulier. Le Dodécaèdre, un des cinq solides platoniciens. E … Wikipédia en Français
Polytope régulier — Pour les articles homonymes, voir régulier. Le dodécaèdre régulier, un des cinq solides platoniciens. En mathématiques, plus précisément … Wikipédia en Français
Polytope model — The polyhedral model (also called the polytope method) is a mathematical framework for loop nest optimization in compiler theory. The polytope method models operations within nested manifest loops as mathematical objects called polytopes,… … Wikipedia
Polytope convexe — Ensemble convexe Pour les autres sens du mot « convexe », voir convexité. Un objet géométrique est dit convexe lorsque, chaque fois qu on y prend deux points A et B, le segment [A,B] qui les joint y est entièrement contenu. Ainsi… … Wikipédia en Français
Polytope croisé — Octaèdre Octaèdre Type Polyèdre régulier Faces Triangle Éléments : · Faces · Arêtes · Sommets · Caractéristique 8 12 6 2 Faces par sommet 4 Sommets par face … Wikipédia en Français
Polytope dual — Le concept de polytope dual est étroitement lié à la notion de convexité. De plus, il permet d associer des entités d un polyèdre à celle de son dual de manière biunivoque. Soit x un point de , on définit le demi espace par ou <> désigne le … Wikipédia en Français
Polytope des stables — Un stable est un ensemble de sommets deux à deux non adjacents. Le polytope des stables de G est l enveloppe convexe des fonctions caractéristiques de ses stables. Plus précisément, soit G un graphe à n sommets. Un choix de numérotation fait… … Wikipédia en Français
Convex polytope — A 3 dimensional convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n dimensional space Rn.[1] Some authors use the terms convex polytope and convex… … Wikipedia