Population genetics


Population genetics

Population genetics is the study of the allele frequency distribution and change under the influence of the four evolutionary forces: natural selection, genetic drift, mutation and gene flow. It also takes account of population subdivision and population structure in space. As such, it attempts to explain such phenomena as adaptation and speciation. Population genetics was a vital ingredient in the modern evolutionary synthesis, its primary founders were Sewall Wright, J. B. S. Haldane and R. A. Fisher, who also laid the foundations for the related discipline of quantitative genetics.

Scope and theoretical considerations

Perhaps the most significant "formal" achievement of the modern evolutionary synthesis has been the framework of mathematical population genetics. Indeed some authors (Beatty 1986) would argue that it does "define" the core of the modern synthesis.

Lewontin (1974) outlined the theoretical task for population genetics. He imagined two spaces: a "genotypic space" and a "phenotypic space". The challenge of a "complete" theory of population genetics is to provide a set of laws that predictably map a population of genotypes ("G"1) to a phenotype space ("P"1), where selection takes place, and another set of laws that map the resulting population ("P"2) back to genotype space ("G"2) where Mendelian genetics can predict the next generation of genotypes, thus completing the cycle. Even leaving aside for the moment the non-Mendelian aspects revealed by molecular genetics, this is clearly a gargantuan task. Visualizing this transformation schematically:

:G_1 ; stackrel{T_1}{ ightarrow} ; P_1 ; stackrel{T_2}{ ightarrow} ; P_2 ; stackrel{T_3}{ ightarrow} ; G_2 ;stackrel{T_4}{ ightarrow} ; G_1' ; ightarrow cdots

(adapted from Lewontin 1974, p. 12). XD

"T"1 represents the genetic and epigenetic laws, the aspects of functional biology, or development, that transform a genotype into phenotype. We will refer to this as the "genotype-phenotype map". "T"2 is the transformation due to natural selection, "T"3 are epigenetic relations that predict genotypes based on the selected phenotypes and finally "T"4 the rules of Mendelian genetics.

In practice, there are two bodies of evolutionary theory that exist in parallel, traditional population genetics operating in the genotype space and the biometric theory used in plant and animal breeding, operating in phenotype space. The missing part is the mapping between the genotype and phenotype space. This leads to a "sleight of hand" (as Lewontin terms it) whereby variables in the equations of one domain, are considered parameters or "constants", where, in a full-treatment they would be transformed themselves by the evolutionary process and are in reality "functions" of the state variables in the other domain. The "sleight of hand" is assuming that we know this mapping. Proceeding as if we do understand it is enough to analyze many cases of interest. For example, if the phenotype is almost one-to-one with genotype (sickle-cell disease) or the time-scale is sufficiently short, the "constants" can be treated as such; however, there are many situations where it is inaccurate.

Population geneticists

The three founders of population genetics were the Britons R.A. Fisher and J.B.S. Haldane and the American Sewall Wright. Fisher and Wright had some fundamental disagreements and a controversy about the relative roles of selection and drift continued for much of the century between the Americans and the British. The Frenchman Gustave Malécot was also important early in the development of the discipline. John Maynard Smith was Haldane's pupil, whilst W.D. Hamilton was heavily influenced by the writings of Fisher. The American George R. Price worked with both Hamilton and Maynard Smith. On the American side, Richard Lewontin and the Japanese Motoo Kimura were heavily influenced by Wright.

ee also

columns-list|3
* Coalescent theory
* Dual inheritance theory
* Ecological genetics
* Ewens's sampling formula
* Fitness landscape
* Founder effect
* Genetic diversity
* Genetic drift
* Genetic erosion
* Genetic pollution
* Gene pool
* Genotype-phenotype distinction
* Habitat fragmentation
* Hardy-Weinberg principle
* Microevolution
* Molecular evolution
* Muller's ratchet
* Mutational meltdown
* Neutral theory of molecular evolution
* Panmixia
* Population bottleneck
* Quantitative genetics
* Reproductive compensation
* Selection
* Small population size
* Viral quasispecies

References

*J. Beatty. "The synthesis and the synthetic theory" in Integrating Scientific Disciplines, edited by W. Bechtel and Nijhoff. Dordrecht, 1986.
* Luigi Luca Cavalli-Sforza. Genes, Peoples, and Languages. North Point Press, 2000.
* Luigi Luca Cavalli-Sforza et al. The History and Geography of Human Genes. Princeton University Press, 1994.
* James F. Crow and Motoo Kimura. Introduction to Population Genetics Theory. Harper & Row, 1972.
* Warren J Ewens. Mathematical Population Genetics. Springer-Verlag New York, Inc., 2004. ISBN 0-387-20191-2
* John H. Gillespie Population Genetics: A Concise Guide, Johns Hopkins Press, 1998. ISBN 0-8018-5755-4.
* Richard Halliburton. Introduction to Population Genetics. Prentice Hall, 2004
* Daniel Hartl. Primer of Population Genetics, 3rd edition. Sinauer, 2000. ISBN 0-87893-304-2
* Daniel Hartl and Andrew Clark. Principles of Population Genetics, 3rd edition. Sinauer, 1997. ISBN 0-87893-306-9.
* Richard C. Lewontin. The Genetic Basis of Evolutionary Change. Columbia University Press, 1974.
* William B. Provine. The Origins of Theoretical Population Genetics. University of Chicago Press. 1971. ISBN 0-226-68464-4.
* Spencer Wells. The Journey of Man. Random House, 2002.
* Spencer Wells. Deep Ancestry: Inside the Genographic Project. National Geographic Society, 2006.
*

External links

* [http://alfred.med.yale.edu/alfred/ ALFRED database]
* [http://www.esp.org/books/sturt/history/contents/sturt-history-ch-17.pdf History of population genetics]
* National Geographic: [https://www5.nationalgeographic.com/genographic/atlas.html Atlas of the Human Journey] (Haplogroup-based human migration maps)
* [http://vlab.infotech.monash.edu.au/simulations/cellular-automata/population-genetics/ Monash Virtual Laboratory] - Simulations of habitat fragmentation and population genetics online at Monash University's Virtual Laboratory.
* [http://www.familytreedna.com/public/Nordic-Celtic/ Nordic and Celtic DNA Project] (Saami & Iberian).


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • population genetics — population genetics. См. популяционная генетика. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.

  • population genetics — n pl but sing in constr a branch of genetics concerned with gene frequencies and genotype frequencies in populations under equilibrium and nonequilibrium conditions considering esp. randomness of mating, immigration, emigration, mutation, and… …   Medical dictionary

  • population genetics — populiacijų genetika statusas T sritis ekologija ir aplinkotyra apibrėžtis Genetikos šaka, tirianti populiacijų genetinę struktūrą, genetiniams pokyčiams ir genų dažnumui poveikį darančių veiksnių dėsningumus. atitikmenys: angl. population… …   Ekologijos terminų aiškinamasis žodynas

  • population genetics — populiacijų genetika statusas T sritis augalininkystė apibrėžtis Genetikos kryptis, apimanti genetinės populiacijų sandaros ir jų raidos veiksnių tyrinėjimus. atitikmenys: angl. population genetics rus. популяционная генетика …   Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

  • population genetics — noun plural but singular in construction : a branch of genetics concerned with gene and genotype frequencies in populations and considering especially randomness of mating, immigration, emigration, mutation, and selection see hardy weinberg law… …   Useful english dictionary

  • population genetics — 1. the branch of genetics concerned with the hereditary makeup of populations. 2. the study of changes in gene frequencies in population of organisms and the effects of such changes on evolution and adaptation. Also called quantitative genetics.… …   Universalium

  • population genetics — The branch of genetics that deals with frequencies of alleles and genotypes in breeding populations …   Glossary of Biotechnology

  • population genetics — noun The study of the allele frequency distribution and change under the influence of the four evolutionary processes: natural selection, genetic drift, mutation and gene flow …   Wiktionary

  • population genetics —   Study of gene frequencies and selection pressures in populations …   Expanded glossary of Cycad terms

  • Population Genetics of the Sami Peoples — Autosomal DNA in Sami PopulationsIn the early years of genetic research the Sami people caught the scientists interest because of their unusual blood group distribution (Boyd 1939, Mourant 1952, Ryttinger 1957). In later years, the use classic… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.