# Hilbert cube

﻿
Hilbert cube

In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology.

Definition

The Hilbert cube is best defined as the topological product of the intervals [0,1/n] where n = 1,2,3,4... That is, it is a cuboid of countably infinite dimension, where the lengths of the edges in each orthogonal direction form the sequence $lbrace 1/n brace_\left\{ninmathbb\left\{N$.

The Hilbert cube is homeomorphic to the product of countably infinitely many copies of the unit interval [0,1] . In other words, it is topologically indistinguishable from the unit cube of countably infinite dimension.

If a point in the Hilbert cube is specified by a sequence $lbrace a_n brace$ with $0 leq a_n leq 1/n$, then a homeomorphism to the infinite dimensional unit cube is given by $h : a_n arr ncdot a_n$.

The Hilbert cube as a metric space

It's sometimes convenient to think of the Hilbert cube as a metric space, indeed as a specific subset of a Hilbert space with countably infinite dimension.For these purposes, it's best not to think of it as a product of copies of [0,1] , but instead as

: [0,1] &times; [0,1/2] &times; [0,1/3] &times; ···;

as stated above, for topological properties, this makes no difference.That is, an element of the Hilbert cube is an infinite sequence

:("x""n")

that satisfies

:0 ≤ "x""n" ≤ 1/"n".

Any such sequence belongs to the Hilbert space 2, so the Hilbert cube inherits a metric from there. One can show that the topology induced by the metric is the same as the product topology in the above definition.

Properties

As a product of compact Hausdorff spaces, the Hilbert cube is itself a compact Hausdorff space as a result of the Tychonoff theorem.

Since ℓ2 is not locally compact, no point has a compact neighbourhood, so one might expect that all of the compact subsets are finite-dimensional.The Hilbert cube shows that this is not the case.But the Hilbert cube fails to be a neighbourhood of any point "p" because its side becomes smaller and smaller in each dimension, so that an open ball around "p" of any fixed radius "e" > 0 must go outside the cube in some dimension.

Every subset of the Hilbert cube inherits from the Hilbert cube the properties of being both metrizable (and therefore T4) and second countable. It is more interesting that the converse also holds: Every second countable T4 space is homeomorphic to a subset of the Hilbert cube. Fact|date=September 2007

References

* | year=1995

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Hilbert — David Hilbert David Hilbert David Hilbert en 1912 Naissance 23 janvier 1862 Königsberg (Prusse Orientale) …   Wikipédia en Français

• Cube De Hilbert — En topologie, on appelle cube de Hilbert l espace produit muni de la topologie produit. D après le théorème de Tychonoff, c est un espace compact. Il est homéomorphe à , ou à l espace des suites , telles que …   Wikipédia en Français

• Cube de hilbert — En topologie, on appelle cube de Hilbert l espace produit muni de la topologie produit. D après le théorème de Tychonoff, c est un espace compact. Il est homéomorphe à , ou à l espace des suites , telles que …   Wikipédia en Français

• HILBERT (PROBLÈMES DE) — «Qui ne se réjouirait de pouvoir soulever le voile qui cache le futur, de jeter un regard sur le développement des mathématiques, ses progrès ultérieurs, les secrets des découvertes des siècles à venir?...» Prévoir le futur des mathématiques: qui …   Encyclopédie Universelle

• Hilbert's third problem — The third on Hilbert s list of mathematical problems, presented in 1900, is the easiest one. The problem is related to the following question: given any two polyhedra of equal volume, is it always possible to cut the first into finitely many… …   Wikipedia

• Cube de Hilbert — En topologie, on appelle cube de Hilbert l espace produit muni de la topologie produit. D après le théorème de Tychonoff, c est un espace compact. Il est homéomorphe à , ou à l espace des suites , telles que …   Wikipédia en Français

• David Hilbert — Hilbert redirects here. For other uses, see Hilbert (disambiguation). David Hilbert David Hilbert (1912) Born …   Wikipedia

• David Hilbert — en 1912 Naissance 23 janvier 1862 Königsberg (Prusse Orientale) Décès 14 février 1943 …   Wikipédia en Français

• Problèmes de Hilbert — Lors du deuxième congrès international des mathématiciens tenu à Paris en 1900, David Hilbert présenta une liste de problèmes qui tenaient jusqu alors les mathématiciens en échec. Ces problèmes devaient, selon Hilbert, marquer le cours des… …   Wikipédia en Français

• Problemes de Hilbert — Problèmes de Hilbert Lors du deuxième congrès international de mathématiques tenu à Paris en 1900, David Hilbert présenta une liste de problèmes qui tenaient jusqu alors les mathématiciens en échec. Ces problèmes devaient, selon Hilbert, marquer… …   Wikipédia en Français