- Repunit
In

recreational mathematics , a**repunit**is anumber like 11, 111, or 1111 that contains only the digit 1. The term stands for**rep**eated**unit**and was coined in 1966 byA.H. Beiler . A**repunit prime**is a repunit that is also aprime number .**Definition**The repunits are defined mathematically as:$R\_n=\{10^n-1over9\}qquadmbox\{for\; \}nge1.$Thus, the number "R"

_{"n"}consists of "n" copies of the digit 1. The sequence of repunits starts 1, 11, 111, 1111,... (sequence in OEIS).**History**Although they were not then known by that name, repunits in base 10 were studied by many mathematicians during the

nineteenth century in an effort to work out and predict the cyclic patterns ofrecurring decimal s [*Dickson, Leonard Eugene and Cresse, G.H.; "History of the Theory of Numbers"; pp. 164-167 ISBN 0821819348*] .It was found very early on that for any prime "p" greater than 5, the period of the decimal expansion of 1/"p" is equal to the length of the smallest repunit number that is divisible by "p". Tables of the period of reciprocal of primes up to 60,000 had been published by 1860 and permitted the factorization by such mathematicians as Reuschle of all repunits up to R

_{16}and many larger ones. By 1880, even R_{17}had been factored [*Ibid*] and it is curious that, thoughEdouard Lucas showed no prime below three million had period nineteen, there was no attempt to test any repunit for primality until early in the twentieth century. The American mathematicianOscar Hoppe proved R_{19}to be prime in 1916 [*Francis, Richard L.; "Mathematical Haystacks: Another Look at Repunit Numbers" in The College Mathematics Journal, Vol. 19, No. 3. (May, 1988), pp. 240-246.*] and Lehmer and Kraitchik independently found R_{23}to be prime in 1929.Further advances in the study of repunits did not occur until the 1960s, when computers allowed many new factors of repunits to be found and the gaps in earlier tables of prime periods corrected. R

_{317}was found to be aprobable prime circa 1966 and was proved prime eleven years later, when R_{1031}was shown to be the only further possible prime repunit with fewer than ten thousand digits. It was proven prime in 1986, but searches for further prime repunits in the following decade consistently failed. However, there was a major side-development in the field of generalized repunits, which produced a large number of new primes and probable primes.Since 1999, four further probably prime repunits have been found, but it is unlikely that any of them will be proven prime in the foreseeable future because of their huge size.

**Repunit primes**The definition of repunits was motivated by recreational mathematicians looking for prime factors of such numbers.

It is easy to show that if "n" is divisible by "a", then "R"

_{"n"}is divisible by "R"_{"a"}::$R\_n=frac\{1\}\{9\}prod\_\{d|n\}Phi\_d(10)$

where $Phi\_d$ is the $d^mathrm\{th\}$ cyclotomic polynomial and "d" ranges over the divisors of "n". For "p" prime, $Phi\_p(x)=sum\_\{i=0\}^\{p-1\}x^i$, which has the expected form of a repunit when "x" is substituted for with 10.

For example, 9 is divisible by 3, and indeed "R"

_{9}is divisible by "R"_{3}—in fact, 111111111 = 111 · 1001001. The corresponding cyclotomic polynomals $Phi\_3(x)$ and $Phi\_9(x)$ are $x^2+x+1$ and $x^6+x^3+1$ respectively. Thus, for "R"_{"n"}to be prime "n" must necessarily be prime.But it is not sufficient for "n" to be prime; for example, "R"_{3}= 111 = 3 · 37 is not prime. Except for this case of "R"_{3}, "p" can only divide "R"_{"n"}for prime "n" if "p = 2kn + 1" for some "k"."R"

_{"n"}is prime for "n" = 2, 19, 23, 317, 1031,... (sequence inOEIS ). "R"_{49081}and "R"_{86453}are probably prime. OnApril 3 2007 Harvey Dubner (who also found "R"_{49081}) announced that "R"_{109297}is a probable prime. [*Harvey Dubner, " [*] He later announced there are no others from "R"*http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0704&L=nmbrthry&T=0&P=178 New Repunit R(109297)*] "_{86453}to "R"_{200000}. [*Harvey Dubner, " [*] On*http://tech.groups.yahoo.com/group/primeform/message/8546 Repunit search limit*] "July 15 2007 Maksym Voznyy announced "R"_{270343}to be probably prime [*Maksym Voznyy, " [*] , along with his intent to search to 400000.*http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0707&L=nmbrthry&T=0&P=1086 New PRP Repunit R(270343)*] "It has been conjectured that there are infinitely many repunit primes [

*http://primes.utm.edu/glossary/page.php?sort=Repunit*] and they seem to occur roughly as often as theprime number theorem would predict: the exponent of the "N"th repunit prime is generally around a fixed multiple of the exponent of the ("N"-1)th.The prime repunits are a trivial subset of the

permutable prime s, i.e., primes that remain prime after anypermutation of their digits.**Generalizations**Professional mathematicians used to consider repunits an arbitrary concept, since they depend on the use of decimal numerals. But the arbitrariness can be removed by generalizing the idea to

**base-"b" repunits**::$R\_n^\{(b)\}=\{b^n-1over\; b-1\}qquadmbox\{for\; \}nge1.$In fact, the base-2 repunits are the well-respected Mersenne numbers "M"

_{"n"}= 2^{"n"}− 1. TheCunningham project endeavours to document the integer factorizations of (among other numbers) the repunits to base 2, 3, 5, 6, 7, 10, 11, and 12.Example 1) the first few base-3 repunit primes are 13, 1093, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013 (sequence in

OEIS ), corresponding to $n$ of 3, 7, 13, 71, 103 (sequence inOEIS ).Example 2) the only base-4 repunit prime is 5 ($11\_4$), because $4^n-1=left(2^n+1\; ight)left(2^n-1\; ight)$, and 3 divides one of these, leaving the other as a factor of the repunit.

It is easy to [

*http://www.caliban.org.uk/pmwiki/pmwiki.php?n=Blogs.RichardRothwell.RepUnits prove*] that given "n", such that "n" is not exactly divisible by 2 or "p", there exists a repunit in base 2"p" that is a multiple of "n".**ee also***

Repdigit

*Recurring decimal

*All one polynomial - Another generalization

*Goormaghtigh conjecture **References****External links**Web sites

*mathworld|urlname=Repunit|title=Repunit

* [*http://www.cerias.purdue.edu/homes/ssw/cun/third/pmain901 The main tables*] of the [*http://www.cerias.purdue.edu/homes/ssw/cun/ Cunningham project*] .

* [*http://primes.utm.edu/glossary/page.php?sort=Repunit Repunit*] at [*http://primes.utm.edu/ The Prime Pages*] byChris Caldwell .

* [*http://www.worldofnumbers.com/repunits.htm Repunits and their prime factors*] at [*http://www.worldofnumbers.com World!Of Numbers*] .Books

*S. Yates, "Repunits and repetends". ISBN 0-9608652-0-9.

*A. Beiler, "Recreations in the theory of numbers". ISBN 0-486-21096-0. Chapter 11, of course.

*Paulo Ribenboim , "The New Book Of Prime Number Records". ISBN 0-387-94457-5.

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**Repunit**— Saltar a navegación, búsqueda Los repunits se definen matemáticamente como Así, el número Rn consta de n ejemplares del dígito 1. La secuencia de repunits comienza 1, 11, 111, 1111,... (secuencia A002275 en OEIS). Contenido 1 … Wikipedia Español**Repunit**— Répunit Dans le domaine des mathématiques récréatives, un répunit est un nombre entier dont l écriture ne comporte que des chiffres 1. Ce terme est une contraction de l expression anglaise repeated unit (répétition de l unité), utilisée pour la… … Wikipédia en Français**repunit**— /repˈū nit/ (mathematics) noun A number consisting of two or more identical integers, eg 22, 333 ORIGIN: repeating unit … Useful english dictionary**Repunit**— Der Begriff Repunit ist ein Kunstwort aus den englischen Wörtern repeated (wiederholt) und unit (Einheit) und bezeichnet eine Zahl, die nur die Ziffer 1 enthält. Der Begriff Repunit wurde 1966 von Albert H. Beiler geprägt.[1] Im Deutschen wird… … Deutsch Wikipedia**Répunit**— Dans le domaine des mathématiques récréatives, un répunit est un nombre entier dont l écriture ne comporte que des chiffres 1. Ce terme est une contraction de l expression anglaise repeated unit (répétition de l unité), utilisée pour la première… … Wikipédia en Français**REPUNIT**— reporting unit … Military dictionary**repunit**— noun A number consisting entirely of the digit 1. 11, 111, and 1,111 are repunits … Wiktionary**11111 Repunit**— Infobox Planet minorplanet = yes width = 25em bgcolour = #FFFFC0 apsis = name = Repunit symbol = caption = discovery = yes discovery ref = discoverer = T. Kobayashi discovery site = Oizumi discovered = November 16, 1995 designations = yes mp name … Wikipedia**Rep-unit**— Répunit Dans le domaine des mathématiques récréatives, un répunit est un nombre entier dont l écriture ne comporte que des chiffres 1. Ce terme est une contraction de l expression anglaise repeated unit (répétition de l unité), utilisée pour la… … Wikipédia en Français**Répunits**— Répunit Dans le domaine des mathématiques récréatives, un répunit est un nombre entier dont l écriture ne comporte que des chiffres 1. Ce terme est une contraction de l expression anglaise repeated unit (répétition de l unité), utilisée pour la… … Wikipédia en Français