 Computational finance

Computational finance, also called financial engineering, is a crossdisciplinary field which relies on computational intelligence, mathematical finance, numerical methods and computer simulations to make trading, hedging and investment decisions, as well as facilitating the risk management of those decisions. Utilising various methods, practitioners of computational finance aim to precisely determine the financial risk that certain financial instruments create.
Contents
History
Generally, individuals who fill positions in computational finance are known as “quants”, referring to the quantitative skills necessary to perform the job. Specifically, knowledge of the C++ programming language, as well as of the mathematical subfields of stochastic calculus, multivariate calculus, linear algebra, differential equations, probability theory and statistical inference are often entry level requisites for such a position. C++ has become the dominant language for two main reasons: the computationally intensive nature of many algorithms, and the focus on libraries rather than applications.
Computational finance was traditionally populated by Ph.Ds in finance, physics and mathematics who moved into the field from more pure, academic backgrounds (either directly from graduate school, or after teaching or research). To work in computational finance, one must have a strong understanding of financial economics, mathematical tools such as probability and statistics and differential equations, as well as engineering methodologies. However, as the actual use of computers has become essential to rapidly carrying out computational finance decisions, a background in computer programming has become useful, and hence many computer programmers enter the field either from Ph.D. programs or from other fields of software engineering. Specially with the advent of more complex computational machines, a knowledge of computer software and hardware has become a necessity. In recent years, advanced computational methods, such as neural network and evolutionary computation have opened new doors in computational finance. Practitioners of computational finance have come from the fields of signal processing and computational fluid dynamics and artificial intelligence. Masters level degree holders are also increasingly making their presence felt as more terminal programs become available at the leading schools; see Master of Computational Finance.
Today, all full service institutional finance firms employ computational finance professionals in their banking and finance operations (as opposed to being ancillary information technology specialists), while there are many other boutique firms ranging from 20 or fewer employees to several thousand that specialize in quantitative trading alone. JPMorgan Chase & Co. was one of the first firms to create a large derivatives business and employ computational finance (including through the formation of RiskMetrics), while Renaissance Technologies, founded in 1982, is probably the oldest and most notable quant fund (along with D.E. Shaw & Co.).
Applications
Computational finance is used in the creation of new financial instruments and strategies, typically exotic options and specialized interest rate derivatives. The field applies engineering methodologies to problems in finance, and employs financial theory and applied mathematics, as well as computation and the practice of programming.
Computational finance is also used in the process of creating new securities or processes, and designing new financial instruments, especially derivative securities. More importantly, computational finance is used in the process of employing mathematical, finance and computer modeling skills to make pricing, hedging, trading and portfolio management decisions. Utilizing various derivative securities and other methods, computational finance aims to precisely control the financial risk that an entity takes on. Methods can be employed to take on unlimited risks under certain events,or completely eliminate other risks by utilizing combinations of derivative and other securities.
Computational finance can be applied to many different types of currencies and pricing options. These include equity, fixed income such as bonds, commodities such as oil or gold, as well as derivatives, swaps, futures, forwards, options, and embedded options. With computational finance comes many risks. Risks are divided into market risk and credit risk. Market risks can be managed using risk identification, risk measurements, and risk management. Credit risks can be managed using credit modeling and credit pricing.
Computational finance is normally employed in the securities and banking industries. It is also used by quantitative analysts in consulting firms or in general manufacturing and service firms, in corporate treasury, corporate finance and risk management roles. Financial engineers will often hold doctorates in computer science or mathematics, although, increasingly, have instead completed a specialized (terminal) masters degree  usually the Master of Financial Engineering, or the more general Master of Quantitative Finance.
Areas where computational finance techniques are employed include:
 Investment banking
 Forecasting
 Risk Management software
 Corporate strategic planning
 Securities trading and financial risk management
 Derivatives trading and risk management
 Investment management
 Pension
 Insurance policy
 Mortgage agreement
 Lottery design
 Islamic banking
 Currency peg
 Gold and commodity valuation
 Collateralised debt obligation
 Credit default swap
 Bargaining
 Market mechanism design
Major contributors
Notable people in computational finance include F. Black and M. Scholes for the pricing of options and corporate liabilities, Robert C. Merton for his theory of rational option pricing and the introduction of stochastic calculus in the study of finance. Robert F. Engle is also notable for the work in analyzing economic timeseries with timevarying volatility. Clive W. J. Granger analyzed the economic time series with common trend.
Some major contributors to computational finance include:
 Fischer Black
 Phelim Boyle
 Emanuel Derman
 Robert Jarrow
 Harry Markowitz
 Robert C. Merton
 Stephen Ross
 Myron Scholes
 Paul Wilmott
 Blake LeBaron
 Darrell Duffie
 Edward Tsang
 Dietmar Maringer
See also
 List of finance topics
 Quantitative analyst
 Mathematical finance
 QuantLib
 Master of Computational Finance
 Financial reinsurance
 Financial modeling
External links
 IEEE Computational Finance and Economics Technical Committee
 An Introduction to Computational Finance without Agonizing Pain
 Introduction to Computational Finance, IEEE Computational Intelligence Society Newsletter, August 2004
 Numerical Techniques for Options
 Monte Carlo Simulation of Stochastic Processes
 Centre for Computational Finance and Economic Agents (CCFEA)
General areas of finance Computational finance · Experimental finance · Financial economics · Financial institutions · Financial markets · Investment management · Mathematical finance · Personal finance · Public finance · Quantitative behavioral finance · Quantum Finance · Statistical finance
Categories: Mathematical finance
 Mathematical science occupations
 Actuarial science
Wikimedia Foundation. 2010.
Look at other dictionaries:
Computational — may refer to: Computer Computational algebra Computational Aeroacoustics Computational and Information Systems Laboratory Computational and Systems Neuroscience Computational archaeology Computational auditory scene analysis Computational biology … Wikipedia
Computational intelligence — (CI) is a set of Nature inspired computational methodologies and approaches to address complex problems of the real world applications to which traditional (first principles, probabilistic, black box, etc.) methodologies and approaches are… … Wikipedia
Computational economics — Economics … Wikipedia
Finance — For the Slovenian newspaper, see Finance (newspaper). Finance Financial markets … Wikipedia
Computational science — Not to be confused with computer science … Wikipedia
Master of Quantitative Finance — A masters degree in quantitative finance concerns the application of mathematical methods to the solution of problems in financial economics.[1] There are several like titled degrees which may further focus on financial engineering, financial… … Wikipedia
QuasiMonte Carlo methods in finance — High dimensional integrals in hundreds or thousands of variables occur commonly in finance. These integrals have to be computed numerically to within a threshold epsilon. If the integral is of dimension d then in the worst case, where one has a… … Wikipedia
Mathematical finance — is a field of applied mathematics, concerned with financial markets. The subject has a close relationship with the discipline of financial economics, which is concerned with much of the underlying theory. Generally, mathematical finance will… … Wikipedia
Master of Finance — A Master of Finance (M.Fin.) is a Master s degree designed to prepare graduates for careers in financial analysis, investment management and corporate finance. An alternate degree title is Master in Finance or Master of Science in Finance. The… … Wikipedia
Master of Science in Finance — (MSF) is a Master s degree designed to prepare graduates for careers in financial analysis, investment management and corporate finance. The MSF is generally a one year, non thesis degree, and is often positioned as a professional degree.… … Wikipedia