Adjugate matrix

Adjugate matrix

In linear algebra, the adjugate or classical adjoint of a square matrix is a matrix that plays a role similar to the inverse of a matrix; it can however be defined for any square matrix without the need to perform any divisions.

The adjugate has sometimes been called the "adjoint", but that terminology is ambiguous. Today, "adjoint" of a matrix normally refers to its corresponding adjoint operator, which is its conjugate transpose.

Contents

Definition

Suppose R is a commutative ring and A is an n×n matrix with entries from R. The definition of the adjugate of A is a multi-step process:

  • Define the (i,j) minor of A, denoted Mij, as the determinant of the (n − 1)×(n − 1) matrix that results from deleting row i and column j of A.
  • Define the (i,j) cofactor of A as
\mathbf{C}_{ij} = (-1)^{i+j} \mathbf{M}_{ij}. \,
  • Define the cofactor matrix of A, as the n×n matrix C whose (i,j) entry is the (i,j) cofactor of A.

The adjugate of A is the transpose of the cofactor matrix of A:

\mathrm{adj}(\mathbf{A}) = \mathbf{C}^T \,.

That is, the adjugate of A is the n×n matrix whose (i,j) entry is the (j,i) cofactor of A:

\mathrm{adj}(\mathbf{A})_{ij} = \mathbf{C}_{ji} \,.

Examples

2 × 2 generic matrix

The adjugate of the 2 × 2 matrix

\mathbf{A} = \begin{pmatrix} {{a}} & {{b}}\\ {{c}}  & {{d}} \end{pmatrix}

is

\operatorname{adj}(\mathbf{A}) = \begin{pmatrix} \,\,\,{{d}} & \!\!{{-b}}\\ {{-c}} & {{a}} \end{pmatrix}.

3 × 3 generic matrix

Consider the 3\times 3 matrix


\mathbf{A} = \begin{pmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{pmatrix}
= \begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}.

Its adjugate is the transpose of the cofactor matrix


\mathbf{C} = \begin{pmatrix} 
+\left| \begin{matrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{matrix} \right| &
-\left| \begin{matrix} A_{21} & A_{23} \\ A_{31} & A_{33}  \end{matrix} \right| &
+\left| \begin{matrix} A_{21} & A_{22} \\ A_{31} & A_{32} \end{matrix} \right| \\
 & & \\
-\left| \begin{matrix} A_{12} & A_{13} \\ A_{32} & A_{33} \end{matrix} \right| &
+\left| \begin{matrix} A_{11} & A_{13} \\ A_{31} & A_{33} \end{matrix} \right| &
-\left| \begin{matrix} A_{11} & A_{12} \\ A_{31} & A_{32} \end{matrix} \right| \\
 & & \\
+\left| \begin{matrix} A_{12} & A_{13} \\ A_{22} & A_{23} \end{matrix} \right| &
-\left| \begin{matrix} A_{11} & A_{13} \\ A_{21} & A_{23} \end{matrix} \right| &
+\left| \begin{matrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{matrix} \right|
\end{pmatrix} = \begin{pmatrix} 
+\left| \begin{matrix} 5 & 6 \\ 8 & 9 \end{matrix} \right| &
-\left| \begin{matrix} 4 & 6 \\ 7 & 9  \end{matrix} \right| &
+\left| \begin{matrix} 4 & 5 \\ 7 & 8 \end{matrix} \right| \\
 & & \\
-\left| \begin{matrix} 2 & 3 \\ 8 & 9 \end{matrix} \right| &
+\left| \begin{matrix} 1 & 3 \\ 7 & 9 \end{matrix} \right| &
-\left| \begin{matrix} 1 & 2 \\ 7 & 8 \end{matrix} \right| \\
 & & \\
+\left| \begin{matrix} 2 & 3 \\ 5 & 6 \end{matrix} \right| &
-\left| \begin{matrix}  1 & 3 \\ 4 & 6 \end{matrix} \right| &
+\left| \begin{matrix} 1 & 2 \\ 4 & 5 \end{matrix} \right|
\end{pmatrix}

So that we have


\operatorname{adj}(\mathbf{A}) = \begin{pmatrix} 
+\left| \begin{matrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{matrix} \right| &
-\left| \begin{matrix} A_{12} & A_{13} \\ A_{32} & A_{33}  \end{matrix} \right| &
+\left| \begin{matrix} A_{12} & A_{13} \\ A_{22} & A_{23} \end{matrix} \right| \\
 & & \\
-\left| \begin{matrix} A_{21} & A_{23} \\ A_{31} & A_{33} \end{matrix} \right| &
+\left| \begin{matrix} A_{11} & A_{13} \\ A_{31} & A_{33} \end{matrix} \right| &
-\left| \begin{matrix} A_{11} & A_{13} \\ A_{21} & A_{23}  \end{matrix} \right| \\
 & & \\
+\left| \begin{matrix} A_{21} & A_{22} \\ A_{31} & A_{32} \end{matrix} \right| &
-\left| \begin{matrix} A_{11} & A_{12} \\ A_{31} & A_{32} \end{matrix} \right| &
+\left| \begin{matrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{matrix} \right|
\end{pmatrix} = \begin{pmatrix} 
+\left| \begin{matrix} 5 & 6 \\ 8 & 9 \end{matrix} \right| &
-\left| \begin{matrix} 2 & 3 \\ 8 & 9  \end{matrix} \right| &
+\left| \begin{matrix} 2 & 3 \\ 5 & 6 \end{matrix} \right| \\
 & & \\
-\left| \begin{matrix} 4 & 6 \\ 7 & 9 \end{matrix} \right| &
+\left| \begin{matrix} 1 & 3 \\ 7 & 9 \end{matrix} \right| &
-\left| \begin{matrix} 1 & 3 \\ 4 & 6  \end{matrix} \right| \\
 & & \\
+\left| \begin{matrix} 4 & 5 \\ 7 & 8 \end{matrix} \right| &
-\left| \begin{matrix} 1 & 2 \\ 7 & 8 \end{matrix} \right| &
+\left| \begin{matrix} 1 & 2 \\ 4 & 5 \end{matrix} \right|
\end{pmatrix}

where

\left| \begin{matrix} A_{im} & A_{in} \\ \,\,A_{jm} & A_{jn} \end{matrix} \right|=
\det\left(    \begin{matrix} A_{im} & A_{in} \\ \,\,A_{jm} & A_{jn} \end{matrix} \right).

Note that the adjugate is the transpose of the cofactor matrix. Thus, for instance, the (3,2) entry of the adjugate is the (2,3) cofactor of A.

3 × 3 numeric matrix

As a specific example, we have

\operatorname{adj}\begin{pmatrix}
\!-3 & \, 2 & \!-5 \\
\!-1 & \, 0 & \!-2 \\
\, 3 & \!-4 & \, 1
\end{pmatrix}=
\begin{pmatrix}
\!-8 &  \,18 &  \!-4 \\
\!-5 &  \!12 &  \,-1 \\
\, 4 &  \!-6 &  \, 2
\end{pmatrix}
.

The −6 in the third row, second column of the adjugate was computed as follows:

(-1)^{2+3}\;\operatorname{det}\begin{pmatrix}\!-3&\,2\\ \,3&\!-4\end{pmatrix}=-((-3)(-4)-(3)(2))=-6.

Again, the (3,2) entry of the adjugate is the (2,3) cofactor of A. Thus, the submatrix

\begin{pmatrix}\!-3&\,\!2\\ \,\!3&\!-4\end{pmatrix}

was obtained by deleting the second row and third column of the original matrix A.

Applications

As a consequence of Laplace's formula for the determinant of an n×n matrix A, we have

\mathbf{A}\, \mathrm{adj}(\mathbf{A}) = \mathrm{adj}(\mathbf{A})\, \mathbf{A} = \det(\mathbf{A})\, \mathbf I_n \qquad (*)

where \mathbf I_n is the n×n identity matrix. Indeed, the (i,i) entry of the product A adj(A) is the scalar product of row i of A with row i of the cofactor matrix C, which is simply the Laplace formula for det(A) expanded by row i. Moreover, for ij the (i,j) entry of the product is the scalar product of row i of A with row j of C, which is the Laplace formula for the determinant of a matrix whose i and j rows are equal and is therefore zero.

From this formula follows one of the most important results in matrix algebra: A matrix A over a commutative ring R is invertible if and only if det(A) is invertible in R.

For if A is an invertible matrix then

1 = \det(\mathbf I_n) = \det(\mathbf{A} \mathbf{A}^{-1}) = \det(\mathbf{A}) \det(\mathbf{A}^{-1}),

and if det(A) is a unit then (*) above shows that

\mathbf{A}^{-1} = \det(\mathbf{A})^{-1}\, \mathrm{adj}(\mathbf{A}).

See also Cramer's rule.

Properties

The adjugate has the properties

\mathrm{adj}(\mathbf{I}) = \mathbf{I}\,
\mathrm{adj}(\mathbf{AB}) = \mathrm{adj}(\mathbf{B})\,\mathrm{adj}(\mathbf{A})\,

for all n×n matrices A and B.

The adjugate preserves transposition:

\mathrm{adj}(\mathbf{A}^T) = \mathrm{adj}(\mathbf{A})^T\,.

Furthermore

\det\big(\mathrm{adj}(\mathbf{A})\big) = \det(\mathbf{A})^{n-1}.\,

If p(t) = det(A − tI) is the characteristic polynomial of A and we define the polynomial q(t) = (p(0) − p(t))/t, then

 \mathrm{adj}(\mathbf{A}) = q(\mathbf{A}) = -(p_1 \mathbf{I} + p_2 \mathbf{A} + p_3 \mathbf{A}^2 + \cdots + p_{n} \mathbf{A}^{n-1}),

where pj are the coefficients of p(t),

 p(t) = p_0 + p_1 t + p_2 t^2 + \cdots + p_{n} t^{n}.

The adjugate also appears in the formula of the derivative of the determinant.

References

  • Strang, Gilbert (1988). "Section 4.4: Applications of determinants". Linear Algebra and its Applications (3rd ed.). Harcourt Brace Jovanovich. pp. 231–232. ISBN 0-15-551005-3. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Matrix (mathematics) — Specific elements of a matrix are often denoted by a variable with two subscripts. For instance, a2,1 represents the element at the second row and first column of a matrix A. In mathematics, a matrix (plural matrices, or less commonly matrixes)… …   Wikipedia

  • adjugate — noun A matrix obtained from another by replacing every element by its cofactor …   Wiktionary

  • Invertible matrix — In linear algebra an n by n (square) matrix A is called invertible (some authors use nonsingular or nondegenerate) if there exists an n by n matrix B such that where In denotes the n by n identity matrix and the multiplication used is ordinary… …   Wikipedia

  • Diagonal matrix — In linear algebra, a diagonal matrix is a matrix (usually a square matrix) in which the entries outside the main diagonal (↘) are all zero. The diagonal entries themselves may or may not be zero. Thus, the matrix D = (di,j) with n columns and n… …   Wikipedia

  • Cayley–Hamilton theorem — In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley and William Hamilton) states that every square matrix over the real or complex field satisfies its own characteristic equation.More precisely; if A is… …   Wikipedia

  • Cofactor (linear algebra) — In linear algebra, the cofactor (sometimes called adjunct, see below) describes a particular construction that is useful for calculating both the determinant and inverse of square matrices. Specifically the cofactor of the (i, j) entry of a… …   Wikipedia

  • Determinant — This article is about determinants in mathematics. For determinants in epidemiology, see Risk factor. In linear algebra, the determinant is a value associated with a square matrix. It can be computed from the entries of the matrix by a specific… …   Wikipedia

  • Conjugate transpose — Adjoint matrix redirects here. For the classical adjoint matrix, see Adjugate matrix. In mathematics, the conjugate transpose, Hermitian transpose, Hermitian conjugate, or adjoint matrix of an m by n matrix A with complex entries is the n by m… …   Wikipedia

  • Cramer's rule — In linear algebra, Cramer s rule is a theorem, which gives an expression for the solution of a system of linear equations with as many equations as unknowns, valid in those cases where there is a unique solution. The solution is expressed in… …   Wikipedia

  • Dodgson condensation — In mathematics, Dodgson condensation is a method of computing the determinants of square matrices. It is named for its inventor Charles Dodgson (better known as Lewis Carroll). The method in the case of an n × n matrix is to construct… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”