Hot cell

Hot cell

Shielded containments are commonly referred to as Hot Cells. The word "hot" refers to radioactive.Hot cells are used in both the Nuclear and the Nuclear Medicines Industry.They are required to protect individuals from radioactive isotopes by providing a safe containment box in which they can control and manipulate the equipment required.

Nuclear Industry

Hot cells are used to inspect spent nuclear fuel rods and to work with other items which are high-energy gamma ray emitters. For instance, the processing of medical isotopes, having been irradiated in a nuclear reactor or particle accelerator, would be carried out in a hot cell. Hot cells are of nuclear proliferation concern, as they can be used to carry out the chemical steps used to extract plutonium from reactor fuel. The cutting of the used fuel, the dissolving of the fuel and the first extraction cycle of a nuclear reprocessing PUREX process (highly active cycle) would need to be done in a hot cell. The second cycle of the PUREX process (medium active cycle) could be done in glove boxes.

Nuclear Medicines Industry

Hot cells are commonly used in the Nuclear Medicines industry:- for the production of radiopharmaceuticals, according to GMP guidelines (industry)- for the manipulation and dispense of radiopharmaceuticals (hospitals)The user must never be subject to shine paths that are emitted from the radioactive isotopes and therefore there generally is heavy shielding around the containment boxes, which can be made out of stainless steel 316 or other materials such as PVC or Corian. This shielding can be ensured by the use of lead (common) or materials such as concrete (very large walls are therefore required) or even tungsten. The amount of energy that is being used in the hot cell will prescribe how thick the shielding must be - for the production of molybdenum (which is used for the manufacture of technetium generators) would require 150mm of Pb.

Viewing windows

In order to view what is in the hot cell, cameras can be used (but these require replacing on a regular basis) or most commonly, lead glass is used.There are several densities for lead glass, but the most common is 5.2 g/cc. A rough calculation for lead equivalence would be to multiply the Pb thickness by 2.5 (e.g. 10mm Pb would require a 25mm thick lead glass window)


Telemanipulators or tongs are used for the remote handling of equipment inside hot cells. These are incredibly valuable as they do not require for the user to place his/her arms inside the containment box and be subject to heavy finger/hand doses. The French company la Calhéne's model MA 11-80 is very popular in this industry.Fact|date=August 2008 EMS are a fabricator of remote manipulation tongs. These need to be used in conjunction with a shielded sphere which can be made by most lead engineering companies (eg. Gravatom)


Lead loaded gloves are often used in conjunction with tongs as they offer better dexterity and can be used in low radiation environments (such as hot cells used in hospital nuclear medicine labs). Some companies have developed tungsten loaded gloves (eg. Gravatom) which offer greater dexterity than lead loaded gloves, with better shielding than their counterparts. Gloves are regularly replaced as the chemicals used for the cleaning/sterilisation process of the containments cause considerable wear and tear.

Clean Room

Hot cells are generally placed in clean rooms with an air classification ranging from D to B (C is the most common).

Different types of hot cells

- Research and Development cells: These cells are often used to test new chemistry units or processes. They are generally fairly large as they require flexibility for the use of varying chemistry units which can greatly vary in size (e.g. synthera and tracerlab). Some cells require remote manipulation.
- Stack mini-cells: This type of hot cell is used purely for production of radiopharmaceuticals. A chemistry unit is placed in each cell, the production process is initiated (receiving the radioactive F18 from the cyclotron) and once finished, the cells are left closed for a minimum of 6 hours allowing the radiation to decrease to a safe level. No Manipulation is necessary here.
- Production and dispense cells: Once the FDG has been produced from the F18 mixing with glucose, a bulk vial will be present in a dispense cell and will therefore need to be carefully dispensed into a number of syringes or vials. Remote manipulation is crucial at this stage.

Wikimedia Foundation. 2010.