 Class (set theory)

In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) which can be unambiguously defined by a property that all its members share. The precise definition of "class" depends on foundational context. In work on ZF set theory, the notion of class is informal, whereas other set theories, such as NBG set theory, axiomatize the notion of "class", e.g., as entities that are not members of another entity.
Every set is a class, no matter which foundation is chosen. A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems.
Outside set theory, the word "class" is sometimes used synonymously with "set". This usage dates from a historical period where classes and sets were not distinguished as they are in modern settheoretic terminology. Many discussions of "classes" in the 19th century and earlier are really referring to sets, or perhaps to a more ambiguous concept.
Contents
Examples
The collection of all algebraic objects of a given type will usually be a proper class. Examples include the class of all groups, the class of all vector spaces, and many others. In category theory, a category whose collection of objects forms a proper class (or whose collection of morphisms forms a proper class) is called a large category.
The surreal numbers are a proper class of objects that has the properties of a field.
Within set theory, many collections of sets turn out to be proper classes. Examples include the class of all sets, the class of all ordinal numbers, and the class of all cardinal numbers.
One way to prove that a class is proper is to place it in bijection with the class of all ordinal numbers. This method is used, for example, in the proof that there is no free complete lattice.
Paradoxes
The paradoxes of naive set theory can be explained in terms of the inconsistent assumption that "all classes are sets". With a rigorous foundation, these paradoxes instead suggest proofs that certain classes are proper. For example, Russell's paradox suggests a proof that the class of all sets which do not contain themselves is proper, and the BuraliForti paradox suggests that the class of all ordinal numbers is proper.
Classes in formal set theories
ZF set theory does not formalize the notion of classes. They can instead be described in the metalanguage, as equivalence classes of logical formulas. For example, if is a structure interpreting ZF, then the metalanguage expression is interpreted in by the collection of all the elements from the domain of ; that is, all the sets in . So we can identify the "class of all sets" with the predicate x=x or any equivalent predicate.
Because classes do not have any formal status in the theory of ZF, the axioms of ZF do not immediately apply to classes. However, if an inaccessible cardinal κ is assumed, then the sets of smaller rank form a model of ZF (a Grothendieck universe), and its subsets can be thought of as "classes".
Another approach is taken by the von Neumann–Bernays–Gödel axioms (NBG); classes are the basic objects in this theory, and a set is then defined to be a class that is an element of some other class. However, the set existence axioms of NBG are restricted so that they only quantify over sets, rather than over all classes. This causes NBG to be a conservative extension of ZF.
Morse–Kelley set theory admits proper classes as basic objects, like NBG, but also allows quantification over all proper classes in its set existence axioms. This causes MK to be strictly stronger than both NBG and ZF.
In other set theories, such as New Foundations or the theory of semisets, the concept of "proper class" still makes sense (not all classes are sets) but the criterion of sethood is not closed under subsets. For example, any set theory with a universal set has proper classes which are subclasses of sets.
References
 Jech, Thomas (2003), Set Theory, Springer Monographs in Mathematics (third millennium ed.), Berlin, New York: SpringerVerlag, ISBN 9783540440857
 Levy, A. (1979), Basic Set Theory, Berlin, New York: SpringerVerlag
Categories:
Wikimedia Foundation. 2010.
Look at other dictionaries:
Set theory (music) — Example of Z relation on two pitch sets analyzable as or derivable from Z17 (Schuijer 2008, p.99), with intervals between pitch classes labeled for ease of comparison between the two sets and their common interval vector, 212320. Musical set… … Wikipedia
Set theory of the real line — is an area of mathematics concerned with the application of set theory to aspects of the real numbers. For example, one knows that all countable sets of reals are null, i.e. have Lebesgue measure 0; one might therefore ask the least possible size … Wikipedia
set theory — the branch of mathematics that deals with relations between sets. [1940 45] * * * Branch of mathematics that deals with the properties of sets. It is most valuable as applied to other areas of mathematics, which borrow from and adapt its… … Universalium
Set theory — This article is about the branch of mathematics. For musical set theory, see Set theory (music). A Venn diagram illustrating the intersection of two sets. Set theory is the branch of mathematics that studies sets, which are collections of objects … Wikipedia
Positive set theory — In mathematical logic, positive set theory is the name for a class of alternative set theories in which the axiom of comprehension* {x mid phi} exists holds for at least the positive formulas phi (the smallest class of formulas containing atomic… … Wikipedia
Descriptive set theory — In mathematical logic, descriptive set theory is the study of certain classes of well behaved subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other… … Wikipedia
Ackermann set theory — is a version of axiomatic set theory proposed by Wilhelm Ackermann in 1956. The languageAckermann set theory is formulated in first order logic. The language L A consists of one binary relation in and one constant V (Ackermann used a predicate M… … Wikipedia
Zermelo set theory — Zermelo set theory, as set out in an important paper in 1908 by Ernst Zermelo, is the ancestor of modern set theory. It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article… … Wikipedia
Constructive set theory — is an approach to mathematical constructivism following the program of axiomatic set theory. That is, it uses the usual first order language of classical set theory, and although of course the logic is constructive, there is no explicit use of… … Wikipedia
Subclass (set theory) — In set theory and its applications throughout mathematics, a subclass is a class contained in some other class in the same way that a subset is a set contained in some other set.That is, given classes A and B, A is a subclass of B if and only if… … Wikipedia