COSMOSOMAS is a circular scanning astronomical microwave experiment to investigate the Cosmic Microwave Background anisotropy and diffuse emission from the Galaxy on angular scales from 1 to 5 degrees. It was designed and built by the Instituto de Astrofísica de Canarias (IAC) in Tenerife, Spain, in 1998. Its name comes from "COSMOlogical Structures On Medium Angular Scales" referring to CMB fluctuations. This experiment grew out experience of the previous Tenerife Experiment with the need to go to smaller angular scales with greater sensitivity.

The experiment consists of two instruments, COSMO15 (three channels at 12.7, 14.7 and 16.3 GHz) and COSMO11 (two hands of linear polarization at 10.9 GHz). Both instruments are based on a circular scanning sky strategy, consisting of a 60 rpm spinning flat mirror directing the sky radiation into an off-axis paraboloidal antenna, whose size is 1.8-m in the COSMO15 and 2.4-m in the COSMO11. These antennas focus the radiation on to cryogenically cooled HEMT-based receivers, both operating at a temperature of 20K (-253 C) and in the frequency range of 10-12 GHz for COSMO11, and 12-18 GHz for COSMO15. In the COSMO15 instrument, the signal is split by a set of three filters, allowing simultaneous observations at 13, 15 and 17 GHz. Thus, four 1-degree resolution sky maps complete in right ascension and covering 20 degrees in declination are obtained every day at these frequencies.

The most important result to come from this experiment is the cleanest detection of "spinning dust" in the Perseus molecular cloud. These are very small dust grains which can spin thousands of million times a second. If they have an asymmetrical electrical charge they can radiate like a lot of tiny dipole antennas. This cloud is very bright at infra-red wavelengths due to thermal emission from the large dust grains, but very little emission would be expected at microwave wavelengths by this type of dust. Instead there is a broad bump of signal centered around 22 GHz, a factor of 50 above the expected level of signal.

External links

* [ COSMOSOMAS experiment web page]

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • List of cosmic microwave background experiments — A comparison of the sensitivity of WMAP with COBE and Penzias and Wilson s telescope. Simulated data. There have been a variety of experiments to measure the Cosmic microwave background (CMB) radiation anisotropies and polarization since its… …   Wikipedia

  • Обсерватория Тейде — обсерватория на фоне вулкана Оригинал названия Observatorio del Teide …   Википедия

  • Cosmic microwave background radiation — CMB and Cosmic background radiation redirect here. For other uses see CMB (disambiguation) and Cosmic background (disambiguation). Physical cosmology …   Wikipedia

  • Wilkinson Microwave Anisotropy Probe — WMAP redirects here. WMAP may also refer to either radio station WXNC or WGSP FM. Wilkinson Microwave Anisotropy Probe General information NSSDC ID 2001 027A …   Wikipedia

  • Cosmic Background Explorer — (COBE) General information NSSDC ID 1989 089A Organization NASA …   Wikipedia

  • Cosmic variance — For the weblog, see Cosmic Variance (blog). Physical cosmology Universe …   Wikipedia

  • Instituto de Astrofísica de Canarias — The Instituto de Astrofísica de Canarias is an astrophysical research institute located in Tenerife in the Canary Islands, Spain. It was founded in 1975 at the University of La Laguna.It operates two astronomical observatories in the Canary… …   Wikipedia

  • Discovery of cosmic microwave background radiation — Bell Labs Horn Antenna in Crawford Hill, NJ In 1965 while using the Horn Antenna, Penzias and Wilson stumbled on the microwave background radiation that permeates the universe. This article concerns the accidental discovery of cosmic microwave… …   Wikipedia

  • Cosmic Background Imager — The CBI Telescope CMB as measured b …   Wikipedia

  • Clover (telescope) — For other uses, see Clover (disambiguation). Clover would have been an experiment to measure the polarization of the Cosmic Microwave Background. It was approved for funding in late 2004, with the aim of having the full telescope operational by… …   Wikipedia